21UPH102C/21UPH202C		Credits:03				
Hrs/Week : 03	Engineering Physics	CIE Marks : 50				
Total Hours : 40		SEE Marks : 50				

UNIT – I	10 Hrs
Modern physics: Introduction, quantization of energy levels, Franck-He Photoelectric effect, Compton effect and wave particle dualism. de-Broglie hypowavelength. Phase velocity and group velocity. Principle, construction and Numerical Problems.	ertz experiment. othesis, de-Broglie working of SEM.
Quantum mechanics: Heisenberg's uncertainty principle and its physical derivation). Application of uncertainty principle (non-existence of electron in th function, properties and physical significance of a wave function. Probab normalization of a wave function. Setting up of a one dimensional tim Schrodinger's wave equation. Eigen functions and eigen values. Applications wave equation- eigen functions and energy eigen values of a particle in a one dim potential well of infinite height. Principle, construction and working of STM. Nume	significance (no ne nucleus). Wave wility density and ne independent of Schrodinger's mensional erical problems.
UNIT – II	10 Hrs
Electrical properties of metals: Free electron concept (Drude-Lorentz theor electron theory-assumptions. Expression for electrical conductivity for metals Failures of classical free electron theory. Quantum free electron theory-assump statistics, Fermi energy, density of states (no derivation). Expression for electrical metals (derivation based on QFET). Fermi factor and variation of Fermi factor different temperatures. Derivation of Fermi energy for OK. Merits of quantum theory. Numerical problems. Semiconductors: Fermi level in intrinsic and extrinsic semiconductors (qualitat indirect band gap semiconductors. Derivation of electrical conductivity for sem effect, derivation of Hall voltage and Hall coefficient. Applications of Hall problems. Superconductivity: Temperature dependence of resistance in conductors and sup Meissner's effect, critical magnetic field, Type-I and Type-II superconduct (qualitative). Applications of superconductors- Maglev vehicle and SQUID.	ry). Classical free s (no derivation). tions, Fermi-Dirac al conductivity for r with energy for m free electron ative). Direct and niconductors. Hall effect. Numerical perconductors. tors. BCS theory
UNIT – III	10 Hrs
 Crystal structure: Directions and planes in a crystal. Miller indices, Expression spacing in terms of Miller indices. Atomic packing factor for HCP. Relation constant and density of a material. Crystal structures of NaCl and Diamond. Bragg's X-Ray spectrometer. Determination of cubic crystal structures using Numerical problems. Dielectric materials: Polar and non-polar dielectrics. Dielectric polarizate mechanisms (qualitative). Dielectric constant, internal field and derivation of is solids and liquids (one dimensional). Clausius - Mossotti relation. Dielectric loss a Applications of dielectric materials. Numerical problems. 	on for interplanar between lattice Bragg's law and g diffractograms. tion, polarization internal field in and its derivation.

UNIT – IV	10 Hrs								
Laser: Introduction, absorption, spontaneous emission and stimulated em	nission, Einstein's								
coefficients (expression for energy density). Conditions for laser action, requisites of a laser									
system, working mechanism. Characteristics of a laser. Classification of lasers. Construction and									
working of Nd: YAG and carbon dioxide lasers. Applications of lasers- industry, defence and									
medical. Numerical problems.									
Optical fibers: Introduction, propagation mechanism in optical fibers, angle of acceptance,									
numerical aperture and its derivation. Modes of propagation (qualitative), type	s of optical fibers								
and attenuation (qualitative). Applications-optical fiber communication sy	stem. Numerical								
problems.									
Ultrasonic Waves: Introduction, generation of ultrasonic waves by inverse pier	zoelectric method								
and its properties. Measurement of velocity of ultrasonic waves in solids by pu	ise echo method.								
Applications of ultrasonic waves - Non destructive testing of materials. Numerical	problems.								
Reference Books:	le of Facila onia a								
1. IVI. N. Avadnanulu and P. G. Ksnirsagar and TVS Arun Murty, 2019 A Text Boo	K OF Engineering								
Physics", (11" revised edition) S. Chand & Company .									
2. S. U. Pillal 2010 "Solid State Physics", (Sixth edition), New Age International.									
3. K. K. Puri and V. K. Babbar, 2010 "Solid State Physics", (third edition), S.Chand.									
4. Arthur Beiser, 2002 Modern physics, (sixth edition) 1.M.⊓.	rnational								
5. D. D. Lauu, 1991 Lasers and non inteal optics, (second edition), New Age International.									
Course Outcomes:									
At the end of the course the student should be able to:									
1. Apply quantum mechanics principles for computing probability density and e	nergy for simple								
systems									
2. Verify conductivity of metals and semiconductors theoretically and explain ap	oplications of								
conductors, semiconductors and superconductors									
3. Identify crystal structure of cubic crystals and explain physical properties and	applications of								
dielectric materials									
4. Analyze suitability of lasers, optical fibers and ultrasonic waves for engineering	ng applications								

		PO1	PO2	PO3	PO4	POS	PO6	PO7	PO8	PO9	PO10	P011	PO12
No	Programme Outcomes Course Outcomes												
1	Apply quantum mechanics principles for computing probability density and energy for simple systems.	3	2	1									1
2	Verify conductivity of metals and semiconductors theoretically and explain applications of conductors, semiconductors and superconductors.	3	2	1									1
3	Identify crystal structure of cubic crystals and explain physical properties and applications of dielectric materials.	3	2	1		1	1				<i>a</i> 5		1
4	Analyze suitability of lasers, optical fibers and ultrasonic waves for engineering applications.	3	2	1		1		1					1

21UPH108L/21UPH208L		Credit-01									
Hrs/Week : 02	Engineering Physics Laboratory	CIE Marks : 50									
Total Hours: 30		SEE Marks : 50									
LIST OF EXPERIIVIENTS											
1. Determination of	Determination of Fermi energy for a given conductor										
2. Determination of	2. Determination of dielectric constant by RC charging and discharging method										
3. The study of frequ	3. The study of frequency response in series and parallel LCR circuits										
4. Identification of p	assive components and estimation of their val	lues									
in a given black bo											
5. Determination of	rigidity modulus of a wire by torsional pendul	um method									
6. Weasurement of	b. Measurement of velocity of ultrasonic waves in liquid by using ultrasonic interferometer										
7. The study of char											
8. Vernication of Ste	Idfi SidW Young's modulus of a motal strin by single can	tilovor mothod									
9. Determination of	Planck's Constant (using LED's or photoelectri	c offect method)									
10. Determination of	pumorical aporture and attenuation of an opti	cal fibor									
12. Determination of	algorithm and anormy gap of a comi	icanductor by four proba									
method	electrical resistivity and energy gap of a semi	iconductor by four probe									
13. Determination of	13. Determination of specific heat of a solid or liquid using calorimeter										
14. Determination of	viscosity of a liquid										
•• •											
Note:	· · · · · · · · · · · · · · · · · · ·										
1. Minimum eight ex	speriments are to be conducted in a semester										
2. The student has t	The student has to perform one experiment during Lab CIE Test										
3. The student has t	o perform one experiment during the SEE prac	ctical examination									
List of experiments (virtu	ali laboratory)										
1. Franck- Hertz exp	eriment										
2. Hall effect experin	nent										
3. Emission spectra	and the evice of a size view and it as a size of a										
4. IVIAgnetic field ald	iviagnetic field along the axis of a circular coll carrying current										
5. Determination of	Determination of Steran S constant										
Note:											
1 Two virtual lab ev	periments are to be performed by students in	a semester									

Course outcomes:

- 1. Apply experimental skills for solving engineering problems
- 2. Use measuring tools for precision measurements
- 3. Measure properties of different materials
- 4. Exhibit documentation skill in the form of experimental write-up

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO)

Subject: Engineering Physics Laboratory

Sub.Code: 21UPH108L/21UPH208L

		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO 8	PO 9	PO10	PO11	PO12
No	Programme Outcomes Course Outcomes												
1	Apply experimental skills for solving engineering problems.	3			1		1		1				1
2	2 Use measuring tools for precision measurements.						1		1				1
3	3 Measure properties of different materials.		1			1	1	1	1				1
4	Exhibit documentation skill in the form of experimental write-up.	1							1	1	1		1