## QS I-GUAGE Certificate for E-Learning Excellence for Academic Digitization

## (E-Lead)




SWAYAM-NPTEL recognizes

BASAVESHWAR ENGINEERING COLLEGE

BAGALKOT, KARNATAKA
as a valuable Local Chapter with a rating of
A
based on perfomance in NPTEL Online Certification courses
JAN-APR 2022

Rating of NPTEL Local Chapters : AAA - 10; AA - 40; A - 50


## Sample Digital Content Prepared

## Pre-recorded lectures/tutorials sessions

Regular circulation of prerecorded video lectures or tutorial sessions by faculty is made available to the students through remote login system.

## Sample YouTube Video Links

- https://youtu.be/IsutN008wRw
- https://youtu.be/XzatwnO 1GU
- https://youtu.be/HB6SQkNBIrE

The College has been effectively utilizing the rich resources available for effective delivery in online mode. These resources are also used for offline teaching process. The important resources are as follows:

## 1. Lecture Capturing Solution:

- Our institute has procured an interactive lecture capturing platform form "Impartus" that can be used for class room teaching as well as distant teaching learning process.



## 2. Interactive Smart Board:

Interactive white boards are available in lecture hall and in seminar hall of the department. Faculty makes exclusive use of the facility for effective teaching learning process.


- 3. Flip Boards:
- Interactive digital flip board facility is available in lecture hall. Faculty make use of this flip board along with laptop/smart phones to deliver lectures involving animations and simulations. The board has convenient features for active teaching learning process.

$\bullet$


## 4. Digitalpads

- The institute has procured digital pads which can be exclusively used for online teaching. The pad can be interfaced with laptop/desktop and provides classroom board like environment, which is helpful in interactive teaching learning process.






# Design of FIR Filters 

(Unit-IV, UEC541C)

Dr. P. N. Kulkarni<br>Dean (Academic) and Professor in<br>Dept. of Electronics and Communication Engineering Basaveshwar Engineering College (Autonomous)<br>Bagalkot

## Design of Digital FIR Filters

- Unlike IIR filters, FIR filters can be designed as the direct approximation to the desired frequency response.
- Because of finite length, FIR filters are inherently stable.
- Phase response is linear, hence are called as constant delay ( $\boldsymbol{\tau}=(\mathrm{M}-1) / \mathbf{2})$ filters.
- Order of the filter is typically large and the filters are mostly non-recursive
- The FIR filters have no poles and hence are all-zero filters
- Generally designed using two methods: (i) windowing method and (ii) frequency sampling technique


## Symmetric and Anti-symmetric Filters



Let $h(n)$ be an impulse response of an FIR filter of length ' $M$ '. The impulse response of an FIR filter is either symmetric or anti-symmetric as shown below

- If $h(n)=h(M-1-n)$ for all values of $n$, then it is said to be symmetric
- If $h(n)=-h(M-1-n)$ for all values of $n$, then it is said to be anti-symmetric


## Symmetric filter when n is odd



Symmetric filter when n is even


The transfer function $\mathrm{H}(\mathrm{z})$ of an FIR filter can be obtained by taking the $\mathbf{z}$-transform of $\mathrm{h}(\mathbf{n})$
$\therefore H(z)=\sum_{n=0}^{M-1} h(n) z^{-n}$, for a symmetric FIR filter (assuming M to be odd), we can write

$$
H(z)=h(0)+h(1) z^{-1}+h(2) z^{-2}+\ldots \ldots+h\left(\frac{M-3}{2}\right) z^{-\left(\frac{M-3}{2}\right)}+h\left(\frac{M-1}{2}\right) z^{-\left(\frac{M-1}{2}\right)}+h\left(\frac{M+1}{2}\right) z^{-\left(\frac{M+1}{2}\right)}+\ldots \ldots+h(M-1) z^{-(M-1)}
$$

$$
\therefore H(z)=z^{-\left(\frac{M-1}{2}\right)}\left[\begin{array}{l}
h(0) z^{\left(\frac{M-1}{2}\right)}+h(1) z^{\frac{M-1}{2}-1}+h(2) z^{\frac{M-1}{2}-2}+\ldots \ldots+h\left(\frac{M-3}{2}\right) z^{\frac{M-1}{2}-\left(\frac{M-3}{2}\right)}+h\left(\frac{M-1}{2}\right) \\
+h\left(\frac{M+1}{2}\right) z^{z^{-1}-\left(\frac{M+1}{2}\right)}+\ldots \ldots+h(M-1) z^{\frac{M-1}{2}-(M-1)}
\end{array}\right]
$$

For symmetric filter, using the relation $h(n)=h(M-1-n)$, we get

$$
H(z)=z^{-\left(\frac{M-1}{2}\right)}\left[h(0)\left\{z^{\left(\frac{M-1}{2}\right)}+z^{-\left(\frac{M-1}{2}\right)}\right\}\right]+h(1)\left\{z^{\left(\frac{M-1}{2}-1\right)}+z^{-\left(\frac{M-1}{2}-1\right)}\right\}_{+\ldots \ldots \ldots+h\left(\frac{M-3}{2}\right)\left\{z^{\left(\frac{M-1}{2}\right)-\frac{M-3}{2}}+z^{-\left(\frac{M-1}{2}-\frac{M-3}{2}\right)}\right\}+h\left(\frac{M-1}{2}\right)}
$$

$$
\begin{equation*}
\therefore H(z)=z^{-\left(\frac{M-1}{2}\right)}\left[h\left(\frac{M-1}{2}\right)+\sum_{n=0}^{\frac{M-3}{2}} h(n)\left\{z^{\left(\frac{M-1}{2}-n\right)}+z^{\left.-\left(\frac{M-1}{2}-n\right)\right\}}\right] .\right. \tag{1}
\end{equation*}
$$

We have equation (1) re-written as follows
$\therefore H(z)=z^{-\left(\frac{M-1}{2}\right)}\left[h\left(\frac{M-1}{2}\right)+\sum_{n=0}^{\frac{M-3}{2}} h(n)\left(z^{\left(\frac{M-1}{2}-n\right)}+z^{\left.-\left(\frac{M-1}{2}-n\right)\right)}\right]\right.$
To find the frequency response of an FIR filter, we replace $z$ with $e^{j w}$,
$\left.\therefore H(z)\right|_{z=e^{j w}}$
$=H\left(e^{j w}\right)=\mathrm{e}^{-j w\left(\frac{M-1}{2}\right)}\left[h\left(\frac{M-1}{2}\right)+\sum_{n=0}^{\frac{M-3}{2}} h(n)\left(e^{j w\left(\frac{M-1}{2}-n\right)}+e^{\left.-j w\left(\frac{M-1}{2}-n\right)\right)}\right]\right.$
For Symmetric FIR filter, we have,
$\therefore\left|H\left(e^{j w}\right)\right|=h\left(\frac{M-1}{2}\right)+2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \cos \omega\left(\frac{M-1}{2}-n\right) \quad$ when M is odd
and $\left|H\left(e^{j w}\right)\right|=2 \sum_{n=0}^{\frac{M}{2}-1} h(n) \cos \omega\left(\frac{M-1}{2}-n\right) \quad$ when M is even
$\left\lvert\, H\left(e^{j w}\right)=-\omega\left(\frac{M-1}{2}\right) \quad\right.$

For anti-symmetric FIR filter, we have,
$\therefore\left|H\left(e^{j w}\right)\right|=2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \sin \omega\left(\frac{M-1}{2}-n\right) \quad$ when $M$ is odd
$\therefore\left|H\left(e^{j w}\right)\right|=2 \sum_{n=0}^{\frac{\substack{n=0 \\ 2}}{2}} h(\mathrm{n}) \sin \omega\left(\frac{M-1}{2}-n\right) \quad$ when $M$ is even

## Steps involved in designing digital FIR filter using windowing method



Let $H_{d}\left(e^{j w}\right)$ be the desired response (Typically ideal response). Taking IDTFT on both sides, we get $\operatorname{IDTFT}\left[H_{d}\left(e^{j w}\right)\right]=\mathrm{h}_{d}(n)=\frac{1}{2 \pi} \int_{2 \pi} H_{d}\left(e^{j w}\right) e^{j w n} d w$, which gives the impulse response of an IIR filter

Let us define a finite length sequence called window function as follows
$\mathrm{w}(n)=\left\{\begin{array}{cc}1 & 0 \leq n \leq M-1 \\ 0 & \text { otherwise }\end{array}\right.$
(1) this is a rectangular window function

Impulse response of an FIR filter, $\mathrm{h}(\mathrm{n})$, is then obtained by truncating an infinite length sequence $h_{d}(n)$ i.e multiplying $h_{d}(n)$ with a finite length window function $\mathrm{w}(\mathrm{n})$ given by Eqn. (1) as follows $h(n)=h_{d}(n) \times w(n)$ $\qquad$ .(2) Taking DTFT on both sides, we get the frquency response of an FIR filter as follows
$H\left(e^{j w}\right)=H_{d}\left(e^{j w}\right) * W\left(e^{j w}\right) \ldots . . . . .(3)$ where $H\left(e^{j w}\right), H_{d}\left(e^{j w}\right)$, and $W\left(e^{j w}\right)$ are the DTFTs of $h(n), h_{d}(n)$, and $w(n)$ respectively $\therefore H\left(e^{j w}\right)=\int_{2 \pi} H_{d}\left(e^{j \theta}\right) * W\left(e^{j[w-\theta]}\right) d \theta \ldots \ldots . . . . .(4)$ from convolution integral

From Eqn. (3), it can be seen that $H\left(e^{j w}\right) \rightarrow H_{d}\left(e^{j w}\right)$ when $W\left(e^{j w}\right) \rightarrow \delta(w) \Rightarrow w(n)$ must be constant for all values of ' $\mathrm{n}^{\prime}$ which is possible only when $\mathrm{w}(\mathrm{n})$ is of infinite length (i.e no windowing at all!). Thus for all windw sequence of finite length the obtained response $H\left(e^{j w}\right)$ differs from $H_{d}\left(e^{j w}\right)$. However, judicious selection of window length can reduce the difference.


We have rectangular window defined as: $w(n)=\left\{\begin{array}{cc}1 & 0 \leq n \leq M-1 \\ 0 & \text { otherwise }\end{array}\right.$
$\operatorname{DTFT}(w(n))=W\left(e^{j w}\right)=\sum_{n=0}^{M-1} 1 \times e^{-j w n}=\sum_{n=0}^{M-1}\left(e^{-j w}\right)^{n}$
$\therefore W\left(e^{j w}\right)=\frac{1-e^{-j w M}}{1-e^{-j w}}=\frac{e^{-j \frac{w M}{2}}\left(e^{j \frac{w M}{2}}-e^{-j \frac{w M}{2}}\right)}{e^{-j \frac{w}{2}}\left(e^{j \frac{w}{2}}-e^{-j \frac{w}{2}}\right)}$, D
$\therefore W\left(e^{j w}\right)=e^{-j \frac{w}{2}(M-1)} \frac{\sin \left(\frac{w M}{2}\right)}{\sin \left(\frac{w}{2}\right)}$ The zero crossing occurs at $w=\frac{2 k \pi}{M}$


During the evaluation of $H\left(e^{j w}\right)=\int_{2 \pi} H_{d}\left(e^{j \theta}\right) * W\left(e^{j[w-\theta]}\right) d \theta$

whenever $W\left(e^{j[w-\theta]}\right)$ glides throgh the point of abrupt discontinuity,
oscillations with non-uniform convergance are formed these distortion caused due to non-uniformly converging oscillations is reffered to as Gibb's effect.

Ideally we would like to have
$M$ small - few computations
$W(\omega)$ - close to a delta function (which implies ' M ' to be large) for the FIR filter response to be close the ideal response

$$
H_{d}(\omega)=\left\{\begin{array}{c}
1 \text { if }|\omega| \leq \omega_{c} \\
0 \text { if } \omega_{c}<|\omega|<\pi \\
\text { These two requirements are conflicting! }
\end{array}\right.
$$

## Characteristics of Rectangular window

1. Width of main lobe, $4 \pi / M$, decreases with increase in $M$
2. Magnitude of side lobes are high and independent of $M$
3. Width of side lobes decreases with increase in $M$ such that the area under the side lobes remain constant
4. Abrupt discontinuity in time domain result in large side lobes leading to undesired ringing effect in the FIR filters

Effect of increase in the length of window function


- The width of the main lobe decreases as $M$ increases
- The area under sidelobes remain constant as $M$ increases


## Commonly used Window functions for FIR filter design

1. Bartlet (Triangular) window: $w(n)=1-\frac{2\left|n-\frac{M-1}{2}\right|}{M-1}$
2. Blackman window

$$
: w(n)=0.42-0.5 \cos \frac{2 \pi n}{M-1}+0.08 \cos \frac{4 \pi n}{M-1}
$$

3. Hamming window

$$
: w(n)=0.54-0.46 \cos \frac{2 \pi n}{M-1}
$$

4. Hanning window
5. Rectangular window

$$
: w(n)=\frac{1}{2}\left[1-\cos \frac{2 \pi n}{M-1}\right]
$$

$$
: w(n)=\left\{\begin{array}{cc}
1 & 0 \leq n \leq M-1 \\
0 & \text { otherwise }
\end{array}\right.
$$



## Example 1: Design an FIR low pass filter with a constant delay of 3 samples using different

 types of window functions. The desired frequency response is given below$$
H_{d}\left(e^{j w}\right)=\left\{\begin{array}{cc}
e^{-j \tau w} & -1 \leq|w| \leq 1 \\
0 & \text { otherwise }
\end{array}=\left\{\begin{array}{cc}
e^{-j 3 w} & -1 \leq|w| \leq 1 \\
0 & \text { otherwise }
\end{array}\right.\right.
$$



Solution

$$
\tau=\frac{M-1}{2}=3 \Rightarrow M=7 \text { is the length of FIR filter }
$$

$$
\begin{aligned}
& \operatorname{IDTFT}\left[H_{d}\left(e^{j w}\right)\right]=h_{d}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H_{d}\left(e^{j w}\right) e^{j w n} d w=\frac{1}{2 \pi} \int_{-1}^{1} e^{-j 3 w} e^{j w n} d w=\frac{1}{2 \pi} \int_{-1}^{1} e^{j w(n-3)} d w \\
& \therefore h_{d}(n)=\frac{1}{2 \pi}\left[\frac{e^{j w(n-3)}}{j(n-3)}\right]_{-1}^{1}=\frac{1}{2 \pi}\left[\frac{e^{j(n-3)}-e^{-j(n-3)}}{j(n-3)}\right] \\
& \therefore h_{d}(n)=\frac{1}{\pi}\left[\frac{\sin (n-3)}{(n-3)}\right] \\
& \therefore h_{d}(n)=\left\{\begin{array}{cc}
\frac{1}{\pi}\left[\frac{\sin (n-3)}{(n-3)}\right] & n \neq 3 \\
\frac{1}{\pi} & n=3
\end{array}\right.
\end{aligned}
$$

We have $h_{d}(n)=\left\{\frac{1}{\pi}\left[\frac{\sin (n-3)}{(n-3)}\right] \quad n \neq 3\right.$
since the filter is Symmetric i. e. $h_{d}(n)=h_{d}(M-1-n)$

$$
\frac{1}{\pi} \quad n=3
$$

$\therefore h_{d}(0)=h_{d}(6)=0.0149$
$h_{d}(1)=h_{d}(5)=0.1447$
$h_{d}(2)=h_{d}(4)=0.2678$
$h_{d}(3)=\frac{1}{\pi}=0.31831$
(1) Rectangular window: $w(n)=1$ for $0 \leq \mathrm{n} \leq 6$

Impulse response of FIR filter is given by: $h(n)=h_{d}(n) \times w(n)=h_{d}(n) \quad \because w(n)=1$
$\therefore h(0)=h(6)=0.0149$
$h(1)=h(5)=0.1447$
$h(2)=h(4)=0.2678$
$h(3)=\frac{1}{\pi}=0.31831$

For Symmetric FIR filter with odd value of M, the magnitude frequency response is given by,
$\left|H\left(e^{j w}\right)\right|=h\left(\frac{M-1}{2}\right)+2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \cos \omega\left(\frac{M-1}{2}-n\right) \quad$ when M is odd
$\therefore\left|H\left(e^{j w}\right)\right|=h(3)+2 \sum_{n=0}^{2} h(n) \cos \omega(3-n)=0.31831+2[0.0149 \cos (3 w)+0.1447 \cos (2 w)+0.2678 \cos (w)]$
$\therefore\left|H\left(e^{j w}\right)\right|=0.31831+0.0298 \cos (3 w)+0.2894 \cos (2 w)+0.5356 \cos (w)$
(2) Hanning Window: $w(n)=\frac{1}{2}\left[1-\cos \frac{2 \pi n}{M-1}\right]=\frac{1}{2}\left[1-\cos \frac{2 \pi n}{6}\right]=\frac{1}{2}\left[1-\cos \frac{\pi n}{3}\right]$ for $\mathrm{n}=0,1,2 \ldots .6$

The Hanning window values are given by

$$
\begin{aligned}
& \therefore w(0)=w(6)=0 \\
& w(1)=w(5)=\frac{1}{4} \\
& w(2)=w(4)=\frac{3}{4} \\
& w(3)=1
\end{aligned}
$$

Impulse response of FIR filter is given by: $h(n)=h_{d}(n) \times w(n)$
$\therefore h(0)=h(6)=h_{d}(0) \times w(0)=0$
$h(1)=h(5)=h_{d}(1) \times w(1)=0.1447 \times \frac{1}{4}=0.03618$
$h(2)=h(4)=h_{d}(2) \times w(2)=0.26785 \times \frac{3}{4}=0.20089$
$h(3)=0.31831 \times 1=0.31831$

For Symmetric FIR filter with odd value of $M$, the manitude frquency response is given by,
$\left|H\left(e^{j w}\right)\right|=h\left(\frac{M-1}{2}\right)+2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \cos \omega\left(\frac{M-1}{2}-n\right)$ when M is odd
$\therefore\left|H\left(e^{j w}\right)\right|=h(3)+2 \sum_{n=0}^{2} h(n) \cos \omega(3-n)=0.31831+2[0.03618 \cos (2 w)+0.20089 \cos (w)]$
$\therefore\left|H\left(e^{j w}\right)\right|=0.31831+0.07236 \cos (2 w)+0.40178 \cos (w)$
(3) Hamming Window: $w(n)=0.54-0.46 \cos \frac{2 \pi n}{M-1}=0.54-0.46 \cos \frac{2 \pi n}{6}$ for $\mathrm{n}=0,1,2 \ldots .6$

The Hamming window values are given by

$$
\begin{aligned}
& \therefore w(0)=w(6)=0.08 \\
& w(1)=w(5)=0.31 \\
& w(2)=w(4)=0.77 \\
& w(3)=1
\end{aligned}
$$

Impulse response of FIR filter is given by: $h(n)=h_{d}(n) \times w(n)$

$$
\begin{aligned}
& \therefore h(0)=h(6)=h_{d}(0) \times w(0)=0.0149 \times 0.08=1.192 \times 10^{-3} \\
& h(1)=h(5)=h_{d}(1) \times w(1)=0.1447 \times 0.31=0.0448 \\
& h(2)=h(4)=h_{d}(2) \times w(2)=0.26785 \times 0.77=0.2062 \\
& h(3)=0.31831 \times 1=0.31831
\end{aligned}
$$

For Symmetric FIR filter with odd value of M, the manitude frquency response is given by,
$\left|H\left(e^{j w}\right)\right|=h\left(\frac{M-1}{2}\right)+2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \cos \omega\left(\frac{M-1}{2}-n\right) \quad$ when M is odd
$\therefore\left|H\left(e^{j w}\right)\right|=h(3)+2 \sum_{n=0}^{2} h(n) \cos \omega(3-n)=0.31831+2\left[1.192 \times 10^{-3} \cos (3 w)+0.0448 \cos (2 w)+0.2062 \cos (w)\right]$
$\therefore\left|H\left(e^{j w}\right)\right|=0.31831+0.0024 \cos (3 w)+0.08973 \cos (2 w)+0.41249 \cos (w)$

## Example 2: Design an FIR high pass filter with a constant delay of 3 samples using

 different types of window functions. The desired frequency response is given below$$
H_{d}\left(e^{j w}\right)=\left\{\begin{array}{cc}
e^{-j \tau w} & 2 \leq|w| \leq \pi \\
0 & \text { otherwise }
\end{array}=\left\{\begin{array}{cc}
e^{-j 3 w} & 2 \leq|w| \leq \pi \\
0 & \text { otherwise }
\end{array}\right.\right.
$$



Solution $\tau=\frac{M-1}{2}=3 \Rightarrow M=7$ is the length of FIR filter
$\operatorname{IDTFT}\left[H_{d}\left(e^{j w}\right)\right]=h_{d}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H_{d}\left(e^{j w}\right) e^{j w n} d w=\frac{1}{2 \pi}\left[\int_{-\pi}^{-2} e^{-j 3 w} e^{j w n} d w+\int_{2}^{\pi} e^{-j 3 w} e^{j w n} d w\right]=\frac{1}{2 \pi}\left[\int_{-\pi}^{-2} e^{j(n-3) w} d w+\int_{2}^{\pi} e^{j(n-3) w} d w\right]$
$\therefore h_{d}(n)=\frac{1}{2 \pi}\left[\frac{e^{j w(n-3)}}{j(n-3)}\right]_{-\pi}^{-2}+\frac{1}{2 \pi}\left[\frac{e^{j w(n-3)}}{j(n-3)}\right]_{2}^{\pi}=\frac{1}{2 \pi}\left[\frac{e^{-j 2(n-3)}-e^{-j \pi(n-3)}+e^{j \pi(n-3)}-e^{j 2(n-3)}}{j(n-3)}\right]$
$\therefore h_{d}(n)=\frac{1}{\pi}\left[\frac{\sin \pi(n-3)-\sin 2(n-3)}{(n-3)}\right]$
$\therefore h_{d}(n)=\left\{\begin{array}{cc}\frac{1}{\pi}\left[\frac{\sin \pi(n-3)-\sin 2(n-3)}{(n-3)}\right] & n \neq 3 \\ 1-\frac{2}{\pi}=0.36338 & n=3\end{array}\right.$

$$
\text { We have } h_{d}(n)=\left\{\begin{array}{cl}
\frac{1}{\pi}\left[\frac{\sin \pi(n-3)-\sin 2(n-3)}{(n-3)}\right] & n \neq 3 \\
1-\frac{2}{\pi}=0.36338 & n=3
\end{array}\right.
$$

For Symmetric FIR filter with odd value of M, the magnitude frequency response is given by,
$\left|H\left(e^{j w}\right)\right|=h\left(\frac{M-1}{2}\right)+2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \cos \omega\left(\frac{M-1}{2}-n\right)$ when M is odd
$\therefore\left|H\left(e^{j w}\right)\right|=h(3)+2 \sum_{n=0}^{2} h(n) \cos \omega(3-n)=0.36338+2[0.02965 \cos (3 w)+0.12045 \cos (2 w)-0.28944 \cos (w)]$
$\therefore\left|H\left(e^{j w}\right)\right|=0.36338+0.0593 \cos (3 w)+0.2409 \cos (2 w)-0.57888 \cos (w)$
(2) Hanning Window: $w(n)=\frac{1}{2}\left[1-\cos \frac{2 \pi n}{M-1}\right]=\frac{1}{2}\left[1-\cos \frac{2 \pi n}{6}\right]=\frac{1}{2}\left[1-\cos \frac{\pi n}{3}\right]$ for $\mathrm{n}=0,1,2 \ldots . .6$

The Hanning window values are given by

$$
\begin{aligned}
& \therefore w(0)=w(6)=0 \\
& w(1)=w(5)=\frac{1}{4} \\
& w(2)=w(4)=\frac{3}{4} \\
& w(3)=1
\end{aligned}
$$

Impulse response of FIR filter is given by: $h(n)=h_{d}(n) \times w(n)$
$\therefore h(0)=h(6)=h_{d}(0) \times w(0)=0.02965 \times 0=0$
$h(1)=h(5)=h_{d}(1) \times w(1)=0.12045 \times \frac{1}{4}=0.0301$
$h(2)=h(4)=h_{d}(2) \times w(2)=-0.28944 \times \frac{3}{4}=0.21708$
$h(3)=0.36338 \times 1=0.36338$

For Symmetric FIR filter with odd value of $M$, the manitude frquency response is given by,

$$
\begin{aligned}
& \left|H\left(e^{j w}\right)\right|=h\left(\frac{M-1}{2}\right)+2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \cos \omega\left(\frac{M-1}{2}-n\right) \text { when M is odd } \\
& \therefore\left|H\left(e^{j w}\right)\right|=h(3)+2 \sum_{n=0}^{2} h(n) \cos \omega(3-n)=0.36338+2[0.0301 \cos (2 w)-0.21708 \cos (w)] \\
& \therefore\left|H\left(e^{j w}\right)\right|=0.36338+0.0602 \cos (2 w)-0.43146 \cos (w)
\end{aligned}
$$

(3) Hamming Window: $w(n)=0.54-0.46 \cos \frac{2 \pi n}{M-1}=0.54-0.46 \cos \frac{2 \pi n}{6}$ for $\mathrm{n}=0,1,2 \ldots .6$ The Hamming window values are given by
$\therefore w(0)=w(6)=0.08$
$w(1)=w(5)=0.31$
$w(2)=w(4)=0.77$
$w(3)=1$
Impulse response of FIR filter is given by: $h(n)=h_{d}(n) \times w(n)$
$\therefore h(0)=h(6)=h_{d}(0) \times w(0)=0.02965 \times 0.08=0.00237$
$h(1)=h(5)=h_{d}(1) \times w(1)=0.12045 \times 0.31=0.0373$
$h(2)=h(4)=h_{d}(2) \times w(2)=-0.28944 \times 0.77=0.2228$
$h(3)=0.36338 \times 1=0.36338$
For Symmetric FIR filter with odd value of $M$, the manitude frquency response is given by,

$$
\begin{aligned}
& \left|H\left(e^{j w}\right)\right|=h\left(\frac{M-1}{2}\right)+2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \cos \omega\left(\frac{M-1}{2}-n\right) \text { when M is odd } \\
& \therefore\left|H\left(e^{j w}\right)\right|=h(3)+2 \sum_{n=0}^{2} h(n) \cos \omega(3-n)=0.36338+2[0.00237 \cos (3 w)+0.03733 \cos (2 w)-0.222 \cos (w)] \\
& \therefore\left|H\left(e^{j w}\right)\right|=0.36338+0.00474 \cos (3 w)+0.07468 \cos (2 w)-0.444 \cos (w)
\end{aligned}
$$

## Example 3: Design an FIR Band pass filter with a constant delay of 3 samples using

 different types of window functions. The desired frequency response is given below$$
H_{d}\left(e^{j w}\right)=\left\{\begin{array}{cc}
e^{-j \tau w} & 1 \leq|w| \leq 2 \\
0 & \text { otherwise }
\end{array}=\left\{\begin{array}{cc}
e^{-j 3 w} & 1 \leq|w| \leq 2 \\
0 & \text { otherwise }
\end{array}\right.\right.
$$



Solution $\quad \tau=\frac{M-1}{2}=3 \Rightarrow M=7$ is the length of FIR filter

$$
\begin{aligned}
& \operatorname{IDTFT}\left[H_{d}\left(e^{j w}\right)\right]=h_{d}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H_{d}\left(e^{j w}\right) e^{j w n} d w=\frac{1}{2 \pi}\left[\int_{-2}^{-1} e^{-j 3 w} e^{j w n} d w+\int_{1}^{2} e^{-j 3 w} e^{j w n} d w\right] \\
& =\frac{1}{2 \pi}\left[\int_{-2}^{1} e^{j(n-3) w} d w+e^{j(n-3) w} d w\right] \\
& \therefore h_{d}(n)=\frac{1}{2 \pi}\left[\frac{e^{j w(n-3)}}{j(n-3)}\right]_{-2}^{-1}+\frac{1}{2 \pi}\left[\frac{e^{j w(n-3)}}{j(n-3)}\right]_{1}^{2}=\frac{1}{2 \pi}\left[\frac{e^{-j(n-3)}-e^{-j 2(n-3)}+e^{j 2(n-3)}-e^{j(n-3)}}{j(n-3)}\right]
\end{aligned}
$$

$$
\therefore h_{d}(n)=\frac{1}{\pi}\left[\frac{-\sin \pi(n-3)+\sin 2(n-3)}{(n-3)}\right]
$$

$$
\therefore h_{d}(n)=\left\{\begin{array}{cc}
\frac{1}{\pi}\left[\frac{\sin 2(n-3)-\sin (n-3)}{(n-3)}\right] & n \neq 3 \\
\frac{1}{\pi}=0.3183 & n=3
\end{array}\right.
$$

$$
\text { We have } h_{d}(n)=\left\{\begin{array}{cl}
\frac{1}{\pi}\left[\frac{\sin 2(n-3)-\sin (n-3)}{(n-3)}\right] & n \neq 3 \\
\frac{1}{\pi}=0.3183 & n=3
\end{array}\right.
$$

since the filter is Symmetric i. e. $h_{d}(n)=h_{d}(M-1-n)$

$$
\begin{aligned}
& \therefore h_{d}(0)=h_{d}(6)=-0.04462 \\
& h_{d}(1)=h_{d}(5)=-0.26517 \\
& h_{d}(2)=h_{d}(4)=0.02159 \\
& h_{d}(3)=\frac{1}{\pi}=0.31831
\end{aligned}
$$

(1) Rectangular window: $w(n)=1$ for $0 \leq \mathrm{n} \leq 6$

Impulse response of FIR filter is given by: $h(n)=h_{d}(n) \times w(n)=h_{d}(n) \quad \because w(n)=1$

$$
\begin{aligned}
& \therefore h(0)=h(6)=-0.04462 \\
& h(1)=h(5)=-0.26517 \\
& h(2)=h(4)=0.02159 \\
& h(3)=0.31831
\end{aligned}
$$

For Symmetric FIR filter with odd value of M, the magnitude frequency response is given by,
$\left|H\left(e^{j w}\right)\right|=h\left(\frac{M-1}{2}\right)+2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \cos \omega\left(\frac{M-1}{2}-n\right) \quad$ when M is odd
$\therefore\left|H\left(e^{j w}\right)\right|=h(3)+2 \sum_{n=0}^{2} h(n) \cos \omega(3-n)=0.31831+2[-0.04462 \cos (3 w)-0.26517 \cos (2 w)+0.02159 \cos (w)]$
$\therefore\left|H\left(e^{j w}\right)\right|=0.31831-0.08924 \cos (3 w)-0.53034 \cos (2 w)+0.04318 \cos (w)$
(2) Hanning Window: $w(n)=\frac{1}{2}\left[1-\cos \frac{2 \pi n}{M-1}\right]=\frac{1}{2}\left[1-\cos \frac{2 \pi n}{6}\right]=\frac{1}{2}\left[1-\cos \frac{\pi n}{3}\right]$ for $\mathrm{n}=0,1,2 \ldots .6$

The Hanning window values are given by

$$
\begin{aligned}
& \therefore w(0)=w(6)=0 \\
& w(1)=w(5)=\frac{1}{4} \\
& w(2)=w(4)=\frac{3}{4} \\
& w(3)=1
\end{aligned}
$$

Impulse response of FIR filter is given by: $h(n)=h_{d}(n) \times w(n)$
$\therefore h(0)=h(6)=h_{d}(0) \times w(0)=-0.04462 \times 0=0$
$h(1)=h(5)=h_{d}(1) \times w(1)=-0.26517 \times \frac{1}{4}=-0.0663$
$h(2)=h(4)=h_{d}(2) \times w(2)=0.02159 \times \frac{3}{4}=0.01619$
$h(3)=0.31831 \times 1=0.36338$

For Symmetric FIR filter with odd value of $M$, the manitude frquency response is given by,
$\left|H\left(e^{j w}\right)\right|=h\left(\frac{M-1}{2}\right)+2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \cos \omega\left(\frac{M-1}{2}-n\right)$ when M is odd
$\therefore\left|H\left(e^{j w}\right)\right|=h(3)+2 \sum_{n=0}^{2} h(n) \cos \omega(3-n)=0.31831+2[-0.0663 \cos (2 w)+0.01619 \cos (w)]$
$\therefore\left|H\left(e^{j w}\right)\right|=0.31831-0.1326 \cos (2 w)+0.03238 \cos (w)$
(3) Hamming Window: $w(n)=0.54-0.46 \cos \frac{2 \pi n}{M-1}=0.54-0.46 \cos \frac{2 \pi n}{6}$ for $\mathrm{n}=0,1,2 \ldots .6$

The Hamming window values are given by

$$
\begin{aligned}
& \therefore w(0)=w(6)=0.08 \\
& w(1)=w(5)=0.31 \\
& w(2)=w(4)=0.77 \\
& w(3)=1
\end{aligned}
$$

Impulse response of FIR filter is given by: $h(n)=h_{d}(n) \times w(n)$
$\therefore h(0)=h(6)=h_{d}(0) \times w(0)=-0.04462 \times 0.08=-0.0357$
$h(1)=h(5)=h_{d}(1) \times w(1)=-0.26517 \times 0.31=-0.0822$
$h(2)=h(4)=h_{d}(2) \times w(2)=0.02159 \times 0.77=0.0166$
$h(3)=0.31831 \times 1=0.31831$
For Symmetric FIR filter with odd value of M, the manitude frquency response is given by,
$\left|H\left(e^{j w}\right)\right|=h\left(\frac{M-1}{2}\right)+2 \sum_{n=0}^{\frac{M-3}{2}} h(n) \cos \omega\left(\frac{M-1}{2}-n\right) \quad$ when M is odd
$\therefore\left|H\left(e^{j w}\right)\right|=h(3)+2 \sum_{n=0}^{2} h(n) \cos \omega(3-n)=0.31831+2[-0.0357 \cos (3 w)-0.0822 \cos (2 w)+0.0166 \cos (w)]$
$\therefore\left|H\left(e^{j w}\right)\right|=0.31831-0.0714 \cos (3 w)-0.1644 \cos (2 w)+0.0322 \cos (w)$

## Characteristics of window functions

| Window Type | Side lobe <br> amplitude (dB) | Transition width | Stop band Gain <br> $(\mathrm{dB})$ | Mainlobe <br> width |
| :--- | :--- | :--- | :--- | :--- |
| Rectangular | -13 | $0.9 / \mathrm{N}$ | -21 | $4 \Omega / \mathrm{M}$ |
| Hanning | -31 | $3.1 / \mathrm{N}$ | -44 | $8 л / \mathrm{M}$ |
| Hamming | -41 | $3.3 / \mathrm{N}$ | -53 | $8 л / \mathrm{M}$ |
| Blackan | -57 | $5.5 / \mathrm{N}$ | -74 | $12 \boldsymbol{\pi} / \mathrm{M}$ |

## Frequency Sampling Technique of FIR Filter Design

Let $h(n)$ be the impulse response of an FIR filter of length $N$
$\therefore H(z)=\sum_{n=0}^{N-1} h(n) z^{-n}$, since $\mathrm{h}(n)=\operatorname{IDFT}[H(k)]=\frac{1}{N} \sum_{k=0}^{N-1} H(k) e^{j \frac{2 \pi}{N} k n}$
$H(z)=\sum_{n=0}^{N-1}\left[\frac{1}{N} \sum_{k=0}^{N-1} H(k) e^{j \frac{2 \pi}{N} k n}\right] z^{-n}$
$=\frac{1}{N} \sum_{k=0}^{N-1} H(k) \sum_{n=0}^{N-1}\left(e^{j \frac{2 \pi}{N} k} z^{-1}\right)^{n}$
$=\frac{1}{N} \sum_{k=0}^{N-1} H(k) \frac{1-e^{j \frac{2 \pi}{N} k N} z^{-N}}{1-e^{j \frac{2 \pi}{N} k} z^{-1}}=\frac{1}{N} \sum_{k=0}^{N-1} H(k) \frac{1-z^{-N}}{1-e^{j \frac{j \pi}{N} k} z^{-1}}$
$\therefore H(z)=\left[1-z^{-N}\right] \cdot\left[\frac{1}{N} \sum_{k=0}^{N-1} \frac{H(k)}{1-e^{j \frac{2 \pi}{N} k} z^{-1}}\right]$
Where $\left[1-z^{-N}\right]$ is a comb filter, and
$H_{k}(z)=\frac{1}{N} \sum_{k=0}^{N-1} \frac{H(k)}{1-e^{j \frac{2 \pi}{N} k} z^{-1}}$ is a single pole resonator

(a)

(b)

Using Conjugate symmetric property of DFT, we have
$H(N-K)=H^{*}(k)$, for $k=0,1,2, \ldots . . . .(N-1) / 2$ when $N$ is odd and
$H(N-K)=H^{*}(k)$, for $k=0,1,2, \ldots \ldots . .(N / 2)-1 \& H(N / 2)=0$ when $N$ is even

We have $h(n)=I D F T[H(k)]=\frac{1}{N} \sum_{k=0}^{N-1} H(k) e^{j \frac{2 \pi}{N} k n}$

$\therefore h(n)=\frac{1}{N}\left[\begin{array}{l}H(0)+\frac{H(1) e^{j \frac{2 \pi}{N} 1 . n}+H(1)^{*} e^{-j \frac{2 \pi}{N} n}}{\left(\underline{H(2) e^{j \frac{2 \pi}{N} 2 . n}}+H(2)^{*} e^{-j \frac{2 \pi}{N} 2 n}\right.}+\ldots \ldots \ldots \ldots .\end{array}\right]$

We have $h(n)=\frac{1}{N}\left[\begin{array}{l}H(0)+\frac{H(1) e^{j \frac{2 \pi}{N} \cdot n}+H(1)^{*} e^{-j \frac{2 \pi}{N} n}}{}+\frac{H(2) e^{j \frac{2 \pi}{N} 2 \cdot n}+H(2)^{*} e^{-j \frac{2 \pi}{N} 2 n}}{}+\ldots . . . . . . . . .\end{array}\right]$
$h(n)=\frac{1}{N}\left[\begin{array}{l}H(0)+H(1) e^{j \frac{2 \pi}{N} 1 . n}+\left(H(1) e^{j \frac{2 \pi}{N} n}\right)^{*}+H(2) e^{j \frac{2 \pi}{N} 2 \cdot n}+\left(H(2) e^{j \frac{2 \pi}{N} 2 n}\right)^{*} \\ \\ \ldots . \ldots+\ldots . . . . . . . \\ \ldots\left(\frac{N-1}{2}\right) e^{j j \frac{2 \pi}{N}\left(\frac{N-1}{2}\right) \cdot n}+\left(H\left(\frac{N-1}{2}\right) e^{j \frac{2 \pi}{N}\left(\frac{N-1}{2}\right) \cdot n}\right)^{*}\end{array}\right]$

$$
\therefore h(n)=\frac{1}{N}\left[H(0)+2 \operatorname{Re}\left\{H(1) e^{j \frac{2 \pi}{N} 1 . n}\right\}+2 \operatorname{Re}\left\{H(2) e^{j \frac{2 \pi}{N} \cdot . n}\right\}+\ldots \ldots \ldots \ldots . . . .2 \operatorname{Re}\left\{H\left(\frac{N-1}{2}\right) e^{j \frac{2 \pi}{N}\left(\frac{N-1}{2}\right) \cdot n}\right\}\right]
$$

$\therefore h(n)=\frac{1}{N}\left[H(0)+2 \sum_{k=1}^{\frac{N-1}{2}} \operatorname{Re}\left\{H(k) e^{j \frac{2 \pi}{N} k . n}\right\}\right] \quad$ When N is odd
$\therefore h(n)=\frac{1}{N}\left[H(0)+2 \sum_{k=1}^{\frac{N}{2}-1} \operatorname{Re}\left\{H(k) e^{j \frac{2 \pi}{N} k \cdot n}\right\}\right] \quad$ When N is even

