

[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### **Department of Electrical and Electronics Engineering**

### Scheme of Teaching & Evaluation and detailed Syllabus for B.E Electrical and Electronics Engineering for batch admitted in 2020-21 (based on Joint Board Meeting held on 04.06.2018 and <u>09-05-2020</u>)

| Semester-3   |                                                | CAY 2021-22 (175 Credits 2020-21 admitted batch)  |    |           |    |    |            |     |       |
|--------------|------------------------------------------------|---------------------------------------------------|----|-----------|----|----|------------|-----|-------|
| SI. Sub Code |                                                | ıb Code Subject                                   | (  | Hrs/ Week |    |    | Exam Marks |     |       |
| 51.          | Sub Code                                       | Subject                                           | С  | L         | Т  | Ρ  | CIE        | SEE | Total |
| 01           | UMA335C                                        | Computational Methods for Electrical Science      | 3  | 3         | 0  | 0  | 50         | 50  | 100   |
| 02           | UEE351C                                        | Analog and Digital Electronics                    | 4  | 4         | 0  | 0  | 50         | 50  | 100   |
| 03           | UEE352C                                        | Network Analysis                                  | 4  | 3         | 2  | 0  | 50         | 50  | 100   |
| 04           | UEE353C                                        | Electrical and Electronic Measurements            | 4  | 4         | 0  | 0  | 50         | 50  | 100   |
| 05           | 05 UEE354C Transformers and Induction Machines |                                                   | 4  | 4         | 0  | 0  | 50         | 50  | 100   |
| 06           | UEE355L                                        | Transformers and Induction Machines Laboratory    | 1  | 0         | 0  | 2  | 50         | 50  | 100   |
| 07           | UEE356L                                        | Electrical and Electronic Measurements Laboratory | 1  | 0         | 0  | 2  | 50         | 50  | 100   |
| 08           | UEE357L                                        | Network Analysis Laboratory                       | 1  | 0         | 0  | 2  | 50         | 50  | 100   |
| 09           | 09 UMA330M Bridge Course Mathematics-I*        |                                                   | 0  | 3         | 0  | 0  | 50         | 50  | 100   |
| 10           | 10 UBT133M Environmental Studies**             |                                                   | 0  | 2         | 0  | 0  | 50         | 50  | 100   |
|              |                                                | Total                                             | 22 | 23        | 02 | 06 | 500        | 500 | 1100  |

| *Bridge Course Mathematics-I | : | is a mandatory subject only for students admitted to 3 Semester through lateral entry scheme (Diploma quota). Passing the subject is compulsory, however marks will not be considered for awarding grade/class. A PP/NP grade will be awarded for passing/not passing the subject. |
|------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Environmental Studies      | : | is amandatory subject for lateral entry students. Question Paper will be of Objective type. Students have to pass the subject compulsorily, however marks will not be considered for awarding Grade / Class / Rank.                                                                |

| Legend for Scheme | L | Lecturer | Т | Tutorial | Р | Practical | N/I | Mandatory |
|-------------------|---|----------|---|----------|---|-----------|-----|-----------|
| Legend in Subject | С | Core     | Ε | Elective | С | Credits   | IVI | wanuatory |

#### **Question paper pattern for Theory SEE:**

- 1. Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.
- 2. Each question should not have more than 4 sub divisions.
- 3. Any five full questions are to be answered choosing at least one from each unit

### Laboratory Assessments for SEE:

- 1. Each Laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE)
- 2 Allocation of 50 marks for CIE Performance and journal write-up: Marks for each experiment = 30 marks / No. of proposed experiments. One Practical test for 20 marks, (5 write up, 10 conduction, calculation, results etc., 5 viva-voce).
- 3. Allocation of 50 marks for SEE: 25% write up, 50% conduction, calculation, results etc., 25% viva-voce



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

| ANALOG AND DIGITAL ELECTRONICS |                               |  |  |  |  |
|--------------------------------|-------------------------------|--|--|--|--|
| Subject Code: UEE351C          | Credits: 04                   |  |  |  |  |
| Contact Hours: 04 (4L-0T-0P)   | Assessment: CIE 50 and SEE 50 |  |  |  |  |

#### **Course Outcomes**

### At the end of this course,

- 1. Student shall be able to analyze and explain different types of clipping, clamping and full wave rectifier circuits, and drive expressions for efficiency and ripple factors.
- 2. Students shall be able to explain different types of biasing circuits, single stage and multistage amplifier, analyze hybrid model and derive h Parameters.
- 3. Student shall be able to explain JFET & MOSFET construction and characteristics and drive important relation
- 4. Student shall be able to simplify boolean algebra equations by using K. map and Quine Mcclusky and MEV techniques.
- 5. Student shall be able to design combinational circuits like Code converters adders, comparators, decoders, mux etc.
- 6. Student shall be able to design Flip-Flop, sequential circuit Registers and Counters.

| Unit-I                                                                                        |
|-----------------------------------------------------------------------------------------------|
| Diode Circuits: L-08 Hrs                                                                      |
| Introduction, clipping circuits, Clipping at two independent levels, Clamping Circuits,       |
| Comparators, Full wave rectifier with C filter                                                |
| Transistor Biasing : L-05 Hrs                                                                 |
| Introduction, Operating point, DC load line, Bias stability, voltage divider bias, Derivation |
| of stability factors, Bias compensation.                                                      |
| Unit-II                                                                                       |
| BJT Low Frequency Analysis : L-04 Hrs                                                         |
| Introduction, two port devices. Hybrid model, transistor hybrid model. h - Parameters,        |
| Analysis of transistor amplifier circuit using h- parameters                                  |
| (CE amplifier only)                                                                           |
| Multistage Amplifiers& Power Amplifier : L-04 Hrs                                             |
| Introduction, Classification of Amplifiers, , Frequency response of R-C coupled amplifier,    |
| Class A large signals amplifier, Transformer coupled power amplifier, Class B (Push pull)     |
| amplifiers                                                                                    |
| Field Effect Transistor: L-05 Hrs                                                             |
| Introduction, construction & characteristics of JFETs, transfer characteristics, Important    |
| relationships, Depletion & Enhancement type MOSFETs                                           |
| Unit-III                                                                                      |
| Number system & Combinational Logic : L-05 Hrs                                                |
| Number system Definition of combinational logic, canonical forms, Karnaugh maps - 3           |



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

and 4 variables, incompletely specified functions (Don't Care terms), simplifying minterm and maxterm equations

### Minimization Techniques: L-05 Hrs

Quine- McClusky minimization technique, Quine- McClusky using Don't Care terms, Map entered variables

### Analysis and Design of Combinational Logic : L-03 Hrs

Adders and subtractors, Cascading full adders, look ahead carry adders, binary comparators, Codes & Code converter.

#### Unit-IV

### Analysis and Design of Combinational Logic : L-05 Hrs

Decoders -BCD Decoders, encoders. Digital multiplexers, multiplexers as Boolean function generators.

#### Sequential Circuits 1 : L-04 Hrs

Basic bistable element, latches, SR latch, Application of SR latch, gated D latch, Master -Slave SR flip - flops (pulse-triggered flip-flops). Master slave JK flip -flop. Conversion of flip-flop from one type to another

#### Sequential Circuits 2 : L-04 Hrs

Characteristic equations, registers, counters - binary ripple counters, synchronous binary counters, counter based on shift registers, design of synchronous counters, design of synchronous mod-6 counter using clocked D, T, JK and SR flip- flops

- 1. Boylestead and Nashelesky, "Electronic Devices and Circuit theory" 11<sup>th</sup> edition, Pearson, 2013.
- 2. Jacob Millman and Christos C. Halkias, "Integrated Electronics", TMH, 2010.
- 3. Albert Malvino and David J Bates, "Electronic Principles", 8<sup>th</sup> edition, TMH, 2016.
- 4. David A. Bell, "Electronic Devices and Circuits", 5<sup>th</sup> edition, Oxford University Press, 2008.
- 5. S.Samuel, Mahadevaswamy and V. Nattarasu, "Electronic Circuits", 2<sup>nd</sup> edition, Sanguine Technical Publishers, 2012.
- 6. John M Yarbrough, "Digital Logic Application and Design", Cengage Learning India Pvt, Ltd, 2006.
- 7. Donald D Givone, "Digital Principles and Design", Tata McGraw Hill, 2003.



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

| NETWORK ANALYSIS             |                               |  |  |  |  |
|------------------------------|-------------------------------|--|--|--|--|
| Subject Code: UEE352C        | Credits: 04                   |  |  |  |  |
| Contact Hours: 05 (3L-2T-0P) | Assessment: CIE 50 and SEE 50 |  |  |  |  |

- Students shall be able to list different types of electric circuits and active & passive elements and recall the statements of network theorems
- 2. Students shall be able to **demonstrate** source transformation, star-delta conversion, mesh & node analysis, network topology concepts and Laplace transforms in electric circuits
- 3. Students shall be able to **solve** eclectic circuits by applying network theorems and Laplace transforms
- 4. Students shall be able to **analyze** behavior of R, L & C elements in the electric circuits, their frequency response and determine resonance related parameters
- 5. Students shall be able to **determine** and **establish** the relation between the various parameters in electric circuits
- 6. Students shall be able to **build** expressions for mesh currents and node voltages by employing the network topology for solving large power system networks.

| Lecture –Theory/Derivations<br>3 Credits (13x3=39 Hrs)                                                                                                                                                                                                            | Lecture<br>Hours | Tutorials –Numerical<br>1 Credit (13x2=26 Hrs)                                                                                                                                                                                                                                                                                                           | Tutorial<br>Hours |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| UNIT-I (10 Hrs)                                                                                                                                                                                                                                                   |                  | UNIT-I (06 Hrs)                                                                                                                                                                                                                                                                                                                                          |                   |
| Mesh and Node Analysis:<br>Practical source transformation, network<br>reduction using star delta transformation,<br>Loop and node analysis with linearly<br>dependent and independent source for DC<br>and AC networks. Concept of super node<br>and super mesh. | 05               | <ul> <li>Transformation of practical current and voltage sources to obtain single equivalent source</li> <li>Determination of equivalent resistance using star-delta transformation</li> <li>Assessment of current and voltage by mesh and node analysis for DC and AC circuits</li> <li>Identification and solving Super node and Super mesh</li> </ul> | 04                |
| Network Topology:<br>Graph of network, concept of tree and co-                                                                                                                                                                                                    | 05               | <ul> <li>Drawing the graphs, tree<br/>and co-tree of electrical</li> </ul>                                                                                                                                                                                                                                                                               | 02                |
| tree, incidence matrix, Tie-set & cut-set schedules, Formulation of equilibrium                                                                                                                                                                                   |                  | circuits <ul> <li>Writing incidence matrix, tie</li> </ul>                                                                                                                                                                                                                                                                                               |                   |

# Basaveshwar Engineering College (Autonomous) [TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]



Bagalkot-587103, Karnataka, India.

## **Department of Electrical and Electronics Engineering**

| equations in matrix form, solution of resistive network, Principles of duality.                                                            |    | <ul> <li>set and cut set matrix for<br/>circuits</li> <li>Developing the equilibrium<br/>equation for mesh and node<br/>analysis in power system<br/>networks</li> <li>Drawing the dual networks<br/>of electrical circuits and<br/>writing the integro-<br/>differential equations</li> </ul>                                                       |    |
|--------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| UNIT-II (10 Hrs)                                                                                                                           |    | UNIT-II (08 Hrs)                                                                                                                                                                                                                                                                                                                                     |    |
| <b>Network Theorems-I:</b><br>Superposition, Reciprocity, and Millman's<br>theorems.                                                       | 05 | <ul> <li>Application of Superposition<br/>theorem to assess the<br/>response in electrical<br/>circuits in multisource<br/>networks</li> <li>Applications of Reciprocity<br/>theorem</li> <li>Assessment of equivalent<br/>voltage sources using<br/>Millman's theorem<br/>multisource networks</li> </ul>                                           | 04 |
| Network Theorems-II:<br>Thevenin's, Norton's and Maximum power<br>transfer theorems                                                        | 05 | <ul> <li>Obtaining Thevenin's and<br/>Norton's equivalent circuit<br/>of electrical networks</li> <li>Analysis of networks with<br/>and without dependent ac<br/>and dc sources by<br/>Thevenin's and Norton's<br/>theorems</li> <li>Analysis of ac and dc circuits<br/>for maximum power<br/>transfer to resistive and<br/>complex loads</li> </ul> | 04 |
| UNIT-III (09 Hrs)                                                                                                                          |    | UNIT-III (06 Hrs)                                                                                                                                                                                                                                                                                                                                    |    |
| <b>Resonant Circuits:</b><br>Series and parallel resonance, frequency-<br>response of series and parallel circuits,<br>Bandwidth, Q-factor | 04 | <ul> <li>Identifying the resonant<br/>frequency for different<br/>circuits</li> <li>Assessment of bandwidth of<br/>resonant circuit</li> <li>Evaluation of Quality factor<br/>and significance</li> <li>Identifying the circuit</li> </ul>                                                                                                           | 02 |



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### **Department of Electrical and Electronics Engineering**

| <b>Transient behaviour and initial conditions:</b><br>Behaviour of circuit element under<br>switching condition and their<br>representation, evaluation of initial and<br>final conditions in RL, RC, and RLC circuits<br>for AC and DC excitation               | 05 | <ul> <li>elements for resonance to<br/>occur at given frequency</li> <li>Identification of cut off<br/>frequencies under different<br/>conditions of the circuit</li> <li>Identification of initial and<br/>final conditions in the<br/>electrical circuits</li> <li>Determination of transient<br/>behaviour of current and<br/>voltage in resistor, capacitor<br/>and inductor</li> </ul>                                    | 04 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| UNIT-IV (10 Hrs)                                                                                                                                                                                                                                                 |    | UNIT-IV (06 Hrs)                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Laplace Transformations and Applications:<br>Step, Ramp and Impulse functions and<br>their Laplace transformation, Waveform<br>synthesis and Laplace transformation initial<br>value theorem and final value theorem,<br>transformed network and their solution. | 05 | <ul> <li>Assessment of Laplace<br/>transform of Impulse, Step,<br/>Ramp, Sinusoidal signals and<br/>shifted functions</li> <li>Application of initial value<br/>and final value theorem for<br/>the assessment of initial and<br/>final conditions of the circuit<br/>elements</li> <li>Laplace Transform of<br/>network and time domain<br/>solution for RL, RC and RLC<br/>networks for ac and dc<br/>excitations</li> </ul> | 04 |
| Two port network parameters:Short Circuit admittance parameters, opencircuit impedance parameters,transmissionparameters, hybrid parameters,relationship between parameters sets.                                                                                | 05 | <ul> <li>Identification of various<br/>circuit parameters of the<br/>two port networks</li> </ul>                                                                                                                                                                                                                                                                                                                              | 02 |

- Hayt, Kemmerly and Durbin, "Engineering Circuit Analysis", 7th edition, TMH, 2007.
   M.E.VanValkenburg, "Network analysis", 3<sup>rd</sup> Edition, PHI, 2002.
- 3. Roy Chowdhary, "Network and Systems", New age International Publications, 2nd Edition 2013.
- 4. Joseph Edminister & M. Nahvi, "Electric Circuits", 6th Edition, TMH, 2014.



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### **Department of Electrical and Electronics Engineering**

| ELECTRICAL AND ELECTRONICS MEASUREMENTS |                               |  |  |  |  |
|-----------------------------------------|-------------------------------|--|--|--|--|
| Subject Code: UEE353C                   | Credits: 04                   |  |  |  |  |
| Contact Hours: 04 (4L-0T-0P)            | Assessment: CIE 50 and SEE 50 |  |  |  |  |

- 1. Students shall be able to **list & define** various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers.
- 2. Students shall be able to **explain** the operation of different types of electrical & electronic measuring instruments/devices, sensors, transducer and their related components.
- 3. Students shall be able to **experiment with or make use** of different types of electrical & electronic measuring instruments/devices, sensors & transducers.
- 4. Students shall be able **compare and contrast** the features of different types of electrical & electronic measuring instruments/devices, sensors & transducers.
- 5. Students shall be able **evaluate/calculate** various parameters related to different types of electrical & electronic measuring instruments/devices, sensors & transducers.
- 6. Students shall be able **discuss/choose/test** different types of electrical & electronic measuring instruments/devices, sensors & transducers.

| UNIT - I                                                                                           |    |
|----------------------------------------------------------------------------------------------------|----|
| Measurement of Resistance, Inductance and Capacitance                                              | 13 |
| Measurement of medium resistance: Wheatstone bridge - Sensitivity of WS bridge, Galvanometer       |    |
| current, Limitations; Measurement of low resistance: Different Methods of measuring low            |    |
| resistance, Kelvin's Double bridge; Earth Resistance Measurement – Fall of potential method; AC    |    |
| Bridges: General equilibrium equations of AC bridges; Measurement of Self Inductance – Types of    |    |
| bridges for measurement of self inductance, Maxwell's Inductance bridge, Maxwell's Inductance      |    |
| Capacitance Bridge, Anderson's bridge; Measurement of Capacitance: Types of bridges for            |    |
| measurement of capacitance, De Sauty's bridge, Schering Bridge; Errors in bridge circuits, Sources |    |
| and Detectors.                                                                                     |    |
| UNIT – II                                                                                          |    |
| Measuring Instruments                                                                              | 08 |
| Introduction; Types of Instruments, Errors in ammeters and Voltmeters; Permanent Magnet Moving     |    |
| Coil Instrument(PMMC) – Torque equation, Errors in PMMC instruments, Advantages and                |    |
| Disadvantages; Moving Iron Instruments(MI) – Torque equation, Classification of MI instruments,    |    |
| Errors in MI instruments, Advantages and Disadvantages; Electrodynamometer Type Instruments –      |    |
| Torque equation, Advantages and Disadvantages; Thermocouple Instruments – Principle of             |    |
| operation, Construction, Advantages and Disadvantages.                                             |    |
| Measurement of Power and Related Parameters                                                        | 05 |
| Dynamometer Type Wattmeter, Low Power Factor Wattmeter; Induction Type Single Phase Energy         |    |
| meter – Construction, Theory, Error adjustments, Calibration; Dynamometer Type Single Phase        |    |
| Power Factor meter – Construction and Operation; Weston Frequency meter.                           |    |
| UNIT – III                                                                                         |    |
| Electronic Instruments                                                                             | 05 |
| Introduction; Principle of Electronic Energy meter; True RMS reading Voltmeter; Electronic         |    |
| Multimeter; Digital Voltmeter(DVM); Classification of DVM- Ramp type DVM,                          |    |
| Extension of Instrument ranges                                                                     | 08 |
| Introduction; Shunts and Multipliers for AC Ammeter and Voltmeter respectively; Instrument         |    |
| Transformers: Advantages of Instrument Transformers, Ratios of Instrument Transformers, ratio      |    |
| Correction Factor, Burden on Instrument Transformer; Current Transformer(CT) – Theory of CT,       |    |



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

Errors in CT's, Design features if CT's; Potential Transformer(PT) – Differences between CT and PT, Theory of PT.

UNIT - IV

#### Sensors and transducers

Definition and meaning of sensors and transducers, Difference between sensors and transducers, **13** Classification (Types) of transducers: Mechanical/Electrical, Active/Passive, Analog/Digital, Modulating/Self balancing, Examples and advantages of electrical transducers. Resistive transducers: Potentiometers, RTD, Thermistor, Magneto-resistor (Principle, construction, working and application for each type). Capacitive transducers: Absolute and differential type, applications. Inductive transducers: Synchronous, Linear variable differential transformer (LVDT) ((Principle, construction, working and application). Self generating (Active) transducers: Piezoelectric, Pyroelectric, Thermocouple (Principle, construction, working and application for each type). Sensor/transducer based instrumentation system: Generalized block diagram representation, Typical examples related to electrical field.

- 1. A. K. Sawhney, "Electrical & Electronic Measurements and Instrumentation", 19<sup>th</sup> edition, Dhanpat Rai & Son's, New Delhi, 2011.
- 2. Cooper D and A. D. Helfrick, "Modern Electronic Instrumentation and Measurement Techniques", PHI.
- 3. Ian R. Sinclair, "Sensors and Transducers", 3rd Edition, Newnes Publication.
- 4. Golding & Widdies, Pitman, "Electrical Measurements and Measuring Instruments", 5th edition, D.R & Son's, New Delhi.
- 5. John P Beately, "Principles of Measurement Systems", 3rd edition, Pearson Education, 2006.
- 6. Ramon P. Areny, John G. Webster, "Sensors and Signal Conditioning", 2nd Edition, Wiley India Private Ltd.



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

| Transformer and                                                                                                                                                                                                                       | d Induction Machines                                                                                                                                                                                                                                                                                       |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Subject Code: UEE354C                                                                                                                                                                                                                 | Credits: 04                                                                                                                                                                                                                                                                                                |    |
| Contact Hours: 04 (4L-0T-0P)                                                                                                                                                                                                          | Assessment: CIE 50 and SEE 50                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |    |
| U                                                                                                                                                                                                                                     | NIT-I                                                                                                                                                                                                                                                                                                      |    |
| Single Phase Transformer                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                            | 13 |
| and on-load analysis of ideal and practical transform                                                                                                                                                                                 | ation, emf equation, concept of ideal transformer, no-load<br>ner. Phasor diagrams, Development of equivalent circuit<br>by OC and SC tests, Transformer ratings and per unit(p.u.)<br>tage regulation, polarity test and Sumpner's test                                                                   |    |
| U                                                                                                                                                                                                                                     | NIT-II                                                                                                                                                                                                                                                                                                     |    |
| Three Phase Transformer                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                            | 07 |
| connections: bank of single phase transformers for the                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |    |
| Parallel operation of Transformer                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                            | 03 |
| Need for parallel operation, conditions to be satisfied for three phase transformer                                                                                                                                                   | or parallel operation and load sharing, Parallel operation of                                                                                                                                                                                                                                              |    |
| Auto Transformer                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                            | 03 |
| Construction, working principle, saving of copper, equiv                                                                                                                                                                              | alent circuit and applications                                                                                                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                       | NIT-III                                                                                                                                                                                                                                                                                                    |    |
| Three Phase Induction Machine                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                            | 13 |
| Construction, types-squirrel cage and slip ring motors<br>field, slip, rotor induced emf and it's frequency, powe<br>equation, torque-slip characteristics-motoring generati<br>effect of rotor resistances on torque slip -character | . Principle of operation, production of rotating magnetic<br>er losses in an induction motor, equivalent circuit, torque<br>ng and breaking modes, starting torque, maximum torque,<br>ristics, power output, no load and blocked rotor test-<br>ram and obtain it's performance, double cage and deep bar |    |
| UN                                                                                                                                                                                                                                    | IIT –IV                                                                                                                                                                                                                                                                                                    |    |
| Starting and Speed Control of Three Phase Induction N                                                                                                                                                                                 | lotors                                                                                                                                                                                                                                                                                                     | 08 |
| Need for starter, DOL, star delta, autotransformer an Voltage control, frequency and rotor resistance control                                                                                                                         | d rotor resistance starters, Calculation of starting torque                                                                                                                                                                                                                                                |    |
| Single Phase Induction Motors                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                            | 05 |
| Construction, double field revolving theory and princip motors: Resistance split phase, capacitor start and capa                                                                                                                      | ble of operation, equivalent circuit starting of single phase citor run motors, shaded pole motors                                                                                                                                                                                                         |    |

- Students will be able to explain the principle and construction of transformer and their phasor diagram.
- Students will be able to draw the equivalent circuit of transformer and calculate the parameters using OC and SC test.
- Students will be able to explain the necessary of autotransformer and parallel operation of transformer and their application.
- Students will be able to connect three phase transformer and compute different values.



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

- Students will be able to state how torque is produced and torque varies with speed for induction motor and compute various electrical and mechanical qualities by no-load and blocked rotor test and circle diagram.
- Students Shall be able to explain starting methods and speed control of single phase and three phase IM and select proper motors for different applications.

- 1. I. J. Nagarath and D.P Kothari, "Electrical Machines" TMI Publications, 4<sup>th</sup> Edition 2012.
- 2. Ashaq Hussian, "Electrical Machines", Dhanapatrai and Co. 2<sup>nd</sup> Edition 2007.
- 3. P.S.Bhimra, "Electrical Machinery", Khanna Publishers, New Delhi, 7<sup>th</sup> Edition 2008-2011.
- 4. Smarjit Ghosh "Electrical Machines" Pearson, 3<sup>rd</sup> Edition 2011.
- 5. P.S.Bhimra, "Generalized Theory of Electrical Machine", Khanna Publishers, New Delhi, 5<sup>th</sup> Edition 2008
- 6. Alexander Longsdorf, "Theory of alternating current", TMH-Publications 1999



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

| Transformer and Induction Machines Laboratory |                               |  |  |  |
|-----------------------------------------------|-------------------------------|--|--|--|
| Subject Code: UEE355L Credits: 01             |                               |  |  |  |
| Contact Hours: 02 (0L-0T-2P)                  | Assessment: CIE 50 and SEE 50 |  |  |  |

#### **Course Outcomes:**

- 1. Predetermination of the efficiency and other parameters.
- 2. Controlling methodologies of the machines.
- 3. Selection of machines for specific application.
- 4. To study specific characteristic of transformer and its operation.
- 5. To study specific characteristic of induction motor and its operation.
- 6. Starting and speed control of induction motor.

- 1. Open circuit and short circuit test on single phase transformer and pre-determination of efficiency, regulation for different loads at power factors. Calculations of equivalent circuit parameters of a given transformer.
- 2. Sumpner's test.
- 3. Parallel operation of two single phase transformers (dissimilar ratings)
- 4. Connections of three single phase transformers: star-star, star-delta, delta-delta and delta-star.
- 5. Scott Connection. To convert 3-phase to 2-phase supply
- 6. Load test on three phase induction motor and performance evaluation, (torque-speed, BHP-efficiency, slip BHP, etc).
- 7. No-load and blocked rotor test on three phase induction motor to calculate parameters of equivalent circuit diagram and performance evaluation.
- 8. No-load and blocked rotor test on three phase induction motor to draw the circle diagram and hence the performance evaluation of given motor.
- 9. Speed control of three phase slip ring induction motor by rotor resistance.
- 10. Load test on single phase induction motor and performance evaluation (torque-speed, BHP- efficiency, slip -BHP, etc)



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### **Department of Electrical and Electronics Engineering**

| Electrical and Electronics Measurement Laboratory |                               |  |  |  |
|---------------------------------------------------|-------------------------------|--|--|--|
| Subject Code: UEE356L Credits: 01                 |                               |  |  |  |
| Contact Hours: 02 (0L-0T-2P)                      | Assessment: CIE 50 and SEE 50 |  |  |  |

#### Course Outcomes:

- 1. Student shall be able to use measuring devices and sensors.
- 2. Student shall be able to analyze electrical circuits from the reading and results obtained from various circuits.
- 3. Student shall be able to interpret the analysis results obtained and drive inference for the given circuits/systems.

- 1. Measurement of low resistance using Kelvin's double bridge.
- 2. Measurements of inductance using Maxwell's L-C bridge and determination of Q factor.
- 3. Measurements of capacitance using De-sauty's bridge and determination of dissipation factor.
- 4. Adjustment and calibration of I-Φ Energy meter.
- 5. Measurement of power in a balanced 3-phase circuit using two wattmeter's for star and delta connected loads.
- 6. Evaluation of transfer characteristics of Resistance Temperature Detector (RTD) using RTD module.
- 7. Evaluation of transfer characteristics of Light Dependent Resistor (LDR) using LDR module.
- 8. Evaluation of transfer characteristics of Semiconductor Temperature Sensor using LM35 sensor module/unit.
- 9. Evaluation of transfer characteristics of Linear Variable Differential Transformer using LVDT module.



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### **Department of Electrical and Electronics Engineering**

| Network Analysis Laboratory                                |  |  |  |  |  |
|------------------------------------------------------------|--|--|--|--|--|
| Subject Code: UEE357L Credits: 01                          |  |  |  |  |  |
| Contact Hours: 02 (0L-0T-2P) Assessment: CIE 50 and SEE 50 |  |  |  |  |  |

#### Course Outcomes:

- 1. Student shall be able to identify and use the voltage & current sources and other passive elements of electrical networks
- 2. Student shall be able to verify the electric network theorems and analyze the behavior of circuit elements
- 3. Student shall be able to interpret the analytical calculations with experiments results of the circuit analysis

- 4. Determination of equivalent resistance in complex electric circuits with star and delta conversions
- 5. Determination of Average value, rms value, Form factor, Peak factor of sinusoidal wave and square wave
- 6. Verification of source transformation and source shifting
- 7. Verification of Kirchhoff's voltage and Current law (AC and DC)
- 8. Verification of mesh analysis (With all possible combinations of Voltage and Current sources including a supermesh, AC and DC)
- 9. Verification of node analysis (With all possible combinations of Voltage and Current sources including a supernode, AC and DC)
- 10. Verification of super position theorem
- 11. Verification of reciprocity theorem
- 12. Verification of maximum power transfer theorem with both resistive and impedance loads
- 13. Verification of Thevenin's, Norton's and Milliman's theorem
- 14. Determination of frequency response for series resonance circuits
- 15. Determination of frequency response for parallel resonance circuits
- 16. Determination of transient response of current in RL and RC circuits with step voltage input
- 17. Determination of two port network parameters Short Circuit admittance, parameters, open circuit impedance parameters, transmission parameters and hybrid parameters



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

|     | Semester-4 | CAY 2021-22 (175 Credits                            | 2020 | - <b>21</b> a | dmi | tted | batch      | )   |       |
|-----|------------|-----------------------------------------------------|------|---------------|-----|------|------------|-----|-------|
| SI. | Sub Code   | Cubicat                                             |      | C Hrs/        |     | eek  | Exam Marks |     |       |
| 51. | Sub Code   | Subject                                             | J    | L             | Т   | Ρ    | CIE        | SEE | Total |
| 01  | UMA435C    | Statistical Methods for Electrical Science          | 3    | 3             | 0   | 0    | 50         | 50  | 100   |
| 02  | UEE451C    | Signals and Systems                                 | 4    | 3             | 2   | 0    | 50         | 50  | 100   |
| 03  | UEE452C    | Power Electronics                                   | 4    | 4             | 0   | 0    | 50         | 50  | 100   |
| 04  | UEE453C    | Operational Amplifiers and Linear IC's              | 4    | 4             | 0   | 0    | 50         | 50  | 100   |
| 05  | UEE454C    | DC Machines and Synchronous Machines                | 4    | 4             | 0   | 0    | 50         | 50  | 100   |
| 06  | UEE456L    | Power Electronics Laboratory                        | 1    | 0             | 0   | 2    | 50         | 50  | 100   |
| 07  | UEE457L    | DC Machines and Synchronous Machines Laboratory     | 1    | 0             | 0   | 2    | 50         | 50  | 100   |
| 08  | UEE458L    | Linear IC's Laboratory                              | 1    | 0             | 0   | 2    | 50         | 50  | 100   |
| 09  | UMA430M    | Bridge Course Mathematics-II*                       | 0    | 3             | 0   | 0    | 50         | 50  | 100   |
| 10  | UHS001N    | Fundamentals of Quantitative Aptitude & Soft Skills | 1    | 2             | 0   | 0    | 50         | 50  | 100   |
| 11  | UHS226M    | Constitution of India**                             | 0    | 2             | 0   | 0    | 50         | 50  | 100   |
| 12  | UHS488C    | Saamskrutika Kannada***                             | 1    | 2             | 0   | 0    | 50         | 50  | 50    |
|     | OR         |                                                     |      |               |     |      |            |     |       |
| 13  | UHS489C    | Balake Kannada***                                   | 1    | 2             | 0   | 0    | 50         | 50  | 50    |
|     |            | Total                                               | 24   | 27            | 02  | 06   | 600        | 600 | 1150  |

| *Bridge Course Mathematics –II               | : | is a mandatory subject only for students admitted to 4 <sup>th</sup> Semester through lateral entry scheme (Diploma quota). Passing the subject is compulsory, however marks will not be considered for awarding grade /class. A PP/NP grade will be awarded for passing/not passing the subject. |
|----------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Constitution of India                      | : | is a mandatory subject for lateral entry students. Question Paper will be of Objective type. Students have to pass the subject compulsorily, however marks will not be considered for awarding Grade / Class /Rank.                                                                               |
| ***Saamskrutika Kannada<br>***Balake Kannada | : | Is for students who speak read and write kannada<br>Is for non-kannada speaking reading and writing                                                                                                                                                                                               |

| Legend for Scheme      | L | Lecturer | Т | Tutorial | Р | Practical | N.4 | Mandatory |
|------------------------|---|----------|---|----------|---|-----------|-----|-----------|
| Legend in Subject code | С | Core     | Ε | Elective | С | Credits   | IVI | wanuatory |

#### **Question paper pattern for Theory SEE:**

- 1. Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.
- 2. Each question should not have more than 4 sub divisions.
- 3. Any five full questions are to be answered choosing at least one from each unit

#### Laboratory Assessments for SEE:

- 4. Each Laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE)
- Allocation of 50 marks for CIE Performance and journal write-up: Marks for each experiment = 30 marks / No. of proposed experiments. One Practical test for 20 marks, (5 write up, 10 conduction, calculation, results etc., 5 viva-voce).
- 6. Allocation of 50 marks for SEE: 25% write up, 50% conduction, calculation, results etc., 25% viva-voce



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### **Department of Electrical and Electronics Engineering**

| Signal and Systems                |                               |  |  |  |  |
|-----------------------------------|-------------------------------|--|--|--|--|
| Subject Code: UEE451C Credits: 04 |                               |  |  |  |  |
| Contact Hours: 05 (3L-2T-0P)      | Assessment: CIE 50 and SEE 50 |  |  |  |  |

- 1. Students shall be able to classify different types of signals and systems.
- 2 Students shall be able to list and define different types of elementary signals and systems.
- 3. Students shall be able to derive the properties of signals and systems, convolution, Fourier series, Fourier transform and Z transform.
- 4. Students shall be able to solve convolution sum and integral, CTFS and DTFS.
- 5. Students shall be able to decide the stability of system in the Z domain for different types of systems.
- 6. Students shall be able to construct the continuous time and discrete time system using direct form-I and canonical form.

| Lecture – Theory/Derivations<br>3 Credits (13x3=39 Hrs)                                                                                                                                                                   | Lecture<br>Hours | Tutorials –Numerical<br>1 Credit (13x2=26 Hrs)                                                                                                                                                                             | Tutorial<br>Hours |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Unit -I (10 Hrs)                                                                                                                                                                                                          |                  | Unit -I (07 Hrs)                                                                                                                                                                                                           |                   |
| Introduction:<br>Definitions of signals and systems,<br>classification of signals, basic operations on<br>signals, Elementary signals, and systems<br>viewed as interconnections of operations,<br>properties of systems. | 10               | <ul> <li>Numerical on</li> <li>Numerical on<br/>systems and<br/>properties of systems</li> <li>Numerical on system<br/>viewed<br/>interconnection</li> </ul>                                                               | 07                |
| Unit -II (10 Hrs)                                                                                                                                                                                                         |                  | Unit -II ( 07Hrs)                                                                                                                                                                                                          |                   |
| Time-domainrepresentationforLTIsystems:Convolution,impulseresponserepresentation,propertiesimpulseresponserepresentation,blockdiagramrepresentations.                                                                     | 10               | <ul> <li>Numerical on convolution of continuous and discrete time systems</li> <li>Numerical on properties of systems</li> <li>Numerical on block diagram representation on both continuous and discrete system</li> </ul> | 07                |
| Unit -III (09 Hrs)                                                                                                                                                                                                        |                  | Unit -III ( 07Hrs)                                                                                                                                                                                                         |                   |



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

| Fourier Analysis of periodic and<br>aperiodic signals:<br>Introduction, Properties of<br>continuous-time Fourier series (excluding<br>derivation of defining equations for CTFS),<br>Fourier representation of discrete-time<br>periodic signals, properties of discrete-time<br>Fourier series (DTFS). | 09 | <ul> <li>Numerical on DTFT</li> <li>Numerical on DTFS</li> <li>Numerical on CTFS</li> </ul>                                                | 07 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------|----|
| Unit -IV (10 Hrs)                                                                                                                                                                                                                                                                                       |    | Unit -IV (05 Hrs)                                                                                                                          |    |
| <b>Z-Transforms:</b><br>Introduction, Z transform, properties of ROC, properties of the Z - transform, inversion of Z -transform, Long division method, Partial fraction expansion method, Transfer function, causality and stability,                                                                  | 10 | <ul> <li>Numerical on Z<br/>transform and<br/>properties of Z<br/>transform</li> <li>Numerical on LTI<br/>system in Z transform</li> </ul> | 05 |

- Simon Haykin and Bary Vam Veen, "Signals and Systems," John Wiely and Sons, 2nd Edition 2014.
- 2. H P HSU, "Signals and Systems," Schaums Outline, TMH, 2nd Edition 2011.
- 3. Michel J Roberts, "Signals and Systems-Analysis of signals through linear systems" TMH, 2003.
- 4. Alan V Oppenheim, Alan S.Will sky and S.hamid Nawab, "Signals and Systems," Pearson Education, Indian Reprint, 2<sup>nd</sup> Edition 2013.



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

| Power Electronics                 |                               |  |  |  |
|-----------------------------------|-------------------------------|--|--|--|
| Subject Code: UEE452C Credits: 04 |                               |  |  |  |
| Contact Hours: 04 (4L-0T-0P)      | Assessment: CIE 50 and SEE 50 |  |  |  |

### Course Outcomes:

### Students able to

- 1. Recall, list and define the various semiconductor switches employed in power electronics circuits
- 2. Students able to describe the operation and switching characteristics of switches and operation of various power converters.
- 3. Derive the expressions of performance parameters for various power converters connected to R and R L loads
- 4. Analyze power converter circuits and its behavior and resolve the output parameters connected to R and R-L loads.
- 5. Design various components for choppers, commutation circuits and snubber elements of switching elements
- 6. Assess the impact of source and load inductance on operation of power converter and summarize the impact in industrial application.

| UNIT-I                                                                                                                                                                                                                                                                                                                                                    |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Introduction:                                                                                                                                                                                                                                                                                                                                             |    |
| Introduction to power electronics, block diagram of power electronic converter system, applications of power electronics. Types of power electronic circuits and their peripheral effects.                                                                                                                                                                | 02 |
| Power Transistors:                                                                                                                                                                                                                                                                                                                                        |    |
| Introduction to Power BJT's, MOSFETs and IGBT's – static characteristics, switching characteristics, switching limits, di/dt and dv/dt protection, cooling, heat sinks and snubber circuits.                                                                                                                                                              | 06 |
| Thyristors                                                                                                                                                                                                                                                                                                                                                |    |
| Introduction, static characteristics, two transistor model. Switching characteristics, di/dt and dv/dt protection.                                                                                                                                                                                                                                        | 05 |
| UNIT-II                                                                                                                                                                                                                                                                                                                                                   |    |
| Controlled Rectifiers:                                                                                                                                                                                                                                                                                                                                    |    |
| Introduction. Classification of rectifiers, principle of phase controlled converter operation.<br>Single- phase half wave, semi-converters and full converters and problems. Three-phase half<br>wave, semi converters and full converters with R, R-L, R-C and RLE load. Performance<br>evaluation of Rectifier, Effects of Load and Source Inductances. | 13 |
| UNIT-III                                                                                                                                                                                                                                                                                                                                                  |    |
| Commutation Techniques:                                                                                                                                                                                                                                                                                                                                   |    |
| Introduction. Natural commutation, forced commutation: self commutation, impulse commutation, resonant pulse commutation and complementary commutation.                                                                                                                                                                                                   | 05 |
| DC –DC Converter                                                                                                                                                                                                                                                                                                                                          |    |

DC – DC Converter



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

Introduction. Principle Operation of dc-dc converter, Buck and Boost converter, Control Strategies: constant frequency, Variable Frequency, Four quadrant operation of dc-dc converter. Derivation of duty cycle of buck and boost converter for continuous mode of operation, Introduction for discontinues mode of operations

#### UNIT-IV

#### Inverters:

Introduction. Types of inverters, performance parameters, principle of operation of half bridge and full bridge inverters with R and R-L load. Three phase inverter configuration to operate with 120 and 180 degree modes. Voltage control of single-phase inverters – single pulse width modulation, multiple pulse width modulation and sinusoidal pulse width modulation and Current source inverters.

#### AC Voltage Controllers:

Introduction. Principle of ON-OFF control and phase control. Single-phase half wave and full wave AC voltage controllers with resistive and inductive loads.

- 1. M.H.Rashid "Power Electronics", 3rd Edition, P.H.I./Pearson, New Delhi, 2002.
- 2. Mohan, Undeland, Robbins" Power Electronics" Wiley Edition 2003
- 3. P.S.Bimbra, "Power Electronics", IV- edition, Khanna Publishers, 2009.
- 4. G.K. Dubey, S.R. Dorodla, A. Joshi and R.M.K. Sinha, "Thyristorised Power Controllers", New Age International Publishers, 2005.
- 5. M.D. Singh and Khanchandani K.B., "Power Electronics", 2<sup>nd</sup> Edition Khanna Publisher, 2007.



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

| Operational Amplifiers and Linear IC's                     |  |  |  |  |
|------------------------------------------------------------|--|--|--|--|
| Subject Code: UEE453C Credits: 04                          |  |  |  |  |
| Contact Hours: 04 (4L-0T-0P) Assessment: CIE 50 and SEE 50 |  |  |  |  |

#### **Course Outcomes**

#### At the end of this course,

- 1. Student should be able to explain the characteristics of Op-Amp.
- 2. Student should be distinguish the operational function of the amplifier.
- 3. Student should be able to explain about the AC amplifier.
- 4. Student should be able to define the frequency response of op-amps.
- 5. Student should be able to design the application of op-amp.
- 6. Student should be able to evaluate the various types of the filters.

#### Unit-I

#### **Op-Amps: L-05 Hours**

Block diagram and characteristics of 741 Op-amp, Op-amp as an inverting and non- inverting amplifier, voltage follower, adder, subtractor, integrator and differentiator.

#### **Op-Amps as AC Amplifier:** L -08 Hours

Capacitor coupled voltage follower, high Z<sub>in</sub> capacitor coupled voltage follower, capacitor coupled non- inverting amplifier, high Zin capacitor coupled non - inverting amplifier, capacitor coupled inverting amplifier, setting the upper cut - off frequency, capacitor coupled difference amplifier and use of single polarity supply.

#### Unit-II

### **Op-Amps Frequency Response and Compensation: L-08 Hours**

Op-amp circuit stability, frequency and phase response, frequency compensating methods, manufacture's recommended compensation, op-amp circuit band width, slew rate effects, stray capacitance effects, load capacitance effects, Z<sub>in</sub> mod compensation and circuit stability precautions.

#### Signal Processing circuits: L-05 Hours

Precision half wave & full wave rectifiers, limiting circuits, clamping circuits, peak detectors, sample and hold circuits.

Unit-III

### Op-amp Nonlinear circuits: L-06 Hours

Op-amps in switching circuits, zero crossing detectors, inverting Schmitt trigger circuit, non inverting Schmitt circuit. Astable multivibrator and mono-stable multivibrator using 555 timer.

### Signal Generator: L-07 Hours

Triangular/Rectangular wave generator, waveform generator design, phase shift oscillator, oscillator, oscillator amplitude stabilization, Wein bridge oscillator, signal generators output controls.

Unit-IV



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

Active filters: L- 09 Hours

First and second order high pass and low pass filters, band stop and band pass filters.

### D.C Voltage Regulators: L-04 Hours

Voltage regulators basics, voltage follower regulator, adjustable output regulator, LM217 and LM237 integrated circuit voltage regulators

#### **References:**

- 1. David A. Bell, "Operational Amplifier and Linear ICS", 3<sup>rd</sup> edition, Oxford, 2012.
- 2. Ramakanth A. Gayakwad, "Operational Amplifier and Linear ICS", 4<sup>th</sup> edition, PHI, 2016.
- 3. R.F. Coughlin & F.F. Driscoll, "Operational Amplifier and Linear ICS", 6<sup>th</sup> edition, PHI, 2015.
- 4. Bruce Carter and Ron Mancini, "OP AMPS for everyone", 4<sup>th</sup> edition, Elsevier, 2013.



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### **Department of Electrical and Electronics Engineering**

| Dc Machines and Synchronous Machines |                               |  |
|--------------------------------------|-------------------------------|--|
| Subject Code: UEE454C                | Credits: 04                   |  |
| Contact Hours: 04 (4L-0T-0P)         | Assessment: CIE 50 and SEE 50 |  |

- 1. Student shall be able to explain the principle operation construction and classification of both AC and DC machines
- 2 Students shall be able to explain the performance operation of both AC and DC machines
- 3. Students shall be able to identify the machines for different operations/applications by using operating characteristics of machines
- 4. Students shall be able to calculate different parameters like losses and efficiency by conducting different tests on different machines and gives the conclusion
- 5. Students shall be able to solve the numerical and compare the results
- 6. Students shall be able to select the machines for different field applications and identify the significance of parallel operation

| UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| DC Generator:                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08 |  |
| Constructional features, emf equation, types of excitation, types of dc generator, no load<br>and load characteristics, armature reaction, calculation of demagnetizing and cross<br>magnetizing AT/pole, compensating winding, commutation, inter poles, application of dc<br>generators.                                                                                                                                                                                  |    |  |
| DC Motors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05 |  |
| Principle of Operation, types, torque equation, characteristics and application of D.C. motors, starters.                                                                                                                                                                                                                                                                                                                                                                   |    |  |
| UNIT - II                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |
| Speed control of DC Motor:                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05 |  |
| Flux and armature control, Ward Leonard method. Electrical braking of DC motors.                                                                                                                                                                                                                                                                                                                                                                                            |    |  |
| Testing of D.C Motors:                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08 |  |
| Losses in DC. Machine, Efficiency, direct load test on DC machine, Swinburne's test,<br>Hopkinson's test, retardation test, Field's test on DC. Series motors.                                                                                                                                                                                                                                                                                                              |    |  |
| UNIT – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |  |
| Synchronous Machines:                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13 |  |
| Construction of salient and non-salient pole synchronous Machines, Advantages of stationary armature, emf equation for generator, effect of distribution and chorded coils, effects of harmonics on emf generated of poly-phase armature windings, phasor diagram of a Synchronous generator with cylindrical rotor, calculation of voltage regulation by EMF, MMF, ZPF, and ASA methods. Phasor diagram and regulation of a salient pole synchronous generator, slip test. |    |  |
| UNIT – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |
| Parallel Operations Of Generators:                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### **Department of Electrical and Electronics Engineering**

Parallel operation and stability, operation on infinite bus, operating characteristics, power flow equations of Alternators. Synchronous Motors: 08

Principle of operation, methods of starting, phasor diagram, effect of changing excitation, two reaction model, V and inverted V curves of synchronous machines, hunting in synchronous machines, effect of damper windings, synchronous condensers.

- 1. I J Nagarath and DP Kothari, "Electrical machines", 4<sup>th</sup> Edition, TMH, New Delhi.
- 2. B.L.Thereeja Electrical technology val -II
- 3. Ashfaq Hussain, "Electrical Machines", Dhanpat Rai Publications, 2<sup>nd</sup> Edition, 2014.
- 4. M. G. Say, Performance and design of AC machines, CBS publishers.
- 5. P.S. Bhimra, "Electrical machinery", Khanna publishers. 7<sup>th</sup> Edition 2008.
- 6. Alexander Lngsdorf, "Theory of alternating current machines", TMH, 2<sup>nd</sup> Edition 2008



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

| Power Electronics Laboratory |                               |  |
|------------------------------|-------------------------------|--|
| Subject Code: UEE456L        | Credits: 01                   |  |
| Contact Hours: 02 (0L-0T-2P) | Assessment: CIE 50 and SEE 50 |  |

#### **Course Outcomes:**

- 1. Students shall be able to explain the basic operation of various power semiconductor devices and passive components.
- 2 Students shall be able to apply power electronic circuits for different loads.
- 3. Students shall be able to demonstrate the ability to apply what they have learned theoretically in the field of Power electronics

- 1. Static characteristic of SCR
- 2. Static and Switching characteristic of IGBT and MOSFET.
- 3. Static characteristic of TRIAC.
- 4. Study of SCR firing circuit(R,RC, UJT).
- 5. Single Phase half wave controlled rectifier with R and RL load.
- 6. Single phase half controlled bridge rectifier with R and RL load.
- 7. Single phase fully controlled bridge rectifier with R and RL load.
- 8. Speed control of a separately excited D.C. motor using an IGBT an MOSFET chopper.
- 9. Study of SCR commutation circuit
- 10. Half wave and Full wave bridge Inverter for R and RL load



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### **Department of Electrical and Electronics Engineering**

| DC Machine and Synchronous Machines Laboratory |                               |
|------------------------------------------------|-------------------------------|
| Subject Code: UEE457L                          | Credits: 01                   |
| Contact Hours: 02 (0L-0T-2P)                   | Assessment: CIE 50 and SEE 50 |

#### Course Outcomes:

- Students shall be able to identify the related experiment and do the necessary connections for the defined experiment
- 2 Students shall be able to conduct necessary task on the machines (AC/DC) to note down the related data.
- 3. Students shall be able to calculate the necessary parameters for the data obtained from the experiments and analyze the related characteristics

- 1. OCC characteristics of D.C. Shunt generator.
- 2. Load characteristics of a D.C. generator.
- 3. Load test on a DC motor- determination of speed-torque and BHP-efficiency characteristics
- 4. Speed control of DC motor by armature voltage control and flux control.
- 5. Swinburne's test.
- 6. Ward Leonard method of speed control of D.C. motor.
- 7. Hopkinson's Test.
- 8. Fields test on series motors.
- 9. Voltage regulation of alternator by EMF, MMF, method.
- 10. Voltage regulation of alternator by ZPF method.
- 11. Synchronization of Alternator with infinite bus.
- 12. V and Inverted V curves of a synchronous motor



[TEQIP Lead Institute, Govt. Aided Institution, AICTE Recognized, Affiliated to VTU Belgaum]

Bagalkot-587103, Karnataka, India.

### Department of Electrical and Electronics Engineering

| Linear Integrated Circuits Laboratory |                               |  |
|---------------------------------------|-------------------------------|--|
| Subject Code: UEE458L                 | Credits: 01                   |  |
| Contact Hours: 02 (0L-0T-2P)          | Assessment: CIE 50 and SEE 50 |  |

#### **Course Outcomes:**

- 1. Students shall be able to design Op-Amp circuits and analyze simple applications of above circuits.
- 2. Students shall be able to design Filter circuits and understand the principles of timers and oscillators.
- 3. Students shall be able to design and analyze rectifier circuits.

- 1. Study of Op-Amp as
- a. Inverting and non inverting amplifier
- b. Integrator and differentiator.
- 2. Study of Op-Amp as
- a. Voltage follower
- b. Adder and substractor
- 3. Study of Op-Amp as zero crossing detector
- 4. Study of Op-Amp as Schmitt trigger
- 5. Study of Op-Amp as triangular and rectangular wave generator.
- 6. Design and testing of Op-Amp based RC phase shift oscillator.
- 7. Design and testing of Op-Amp based RC Wein bridge oscillator.
- 8. Study of rectifiers using Op-Amp.
- 9. Design and testing of filters of the first and second order using Op-Amp.
- 10. Study of Astable multivibrator using Op-Amp.
- 11. Study of Astable multivibrator using 555 timer