(For students admitted to I year in 2019-20)

Hours/Week : 03 Total Hours :40		03 - C	redits (3 :0 : 0)							
Total Hours :40	Computer Application to Power System	CIE	Marks : 50							
		SEE	E Marks : 50							
	UNIT – I		(10 Hours)							
Network Topology: Intro	duction, Elementary Graph Theory, conne	ected gr	aph, sub graph							
Loop, Cut-set, Tree, Co- t	ree, Basic loops, Basic cut-set. Incidence N	Matrices	: Element-node							
incidence matrix A (Bu	is-incidence matrix), Branch path incid	ence m	natrix K, Basic							
(Fundamental) cut-set incidence matrix B, Augmented cut-set matrix, Basic loop incidence										
matrix C, Augmented loop incidence matrix										
	eral primitive element, Impedance and A	dmittan	ce form of the							
primitive element, Primitiv										
	duction, Derivation of $Y_{bus} = [A][y][A]^T$,									
•	leling: Transmission lines, Transformers,	Loads	and generator							
internal impedance. Exam	-									
	UNIT – II		(10 Hours)							
	duction, Power Flow Equation, Classification									
•	Flow: System data, Generator bus data, Lo									
-	orithm for GS method, Modification of a	-	n to include PV							
	Acceleration of convergence and examples.									
	d: Introduction, Algorithm for NR method in	n polar d	coordinates and							
rectangular coordinates. F	ast Decoupled Load Flow and examples.									
E			(10 Hours)							
•	f Power System: Introduction, Performa									
	glecting losses and generator limits, Econon	-	_							
	lecting losses, Iterative technique, Econo roximation penalty factor, Derivation of tra									
	cheduling for hydrothermal plants. Probler									
procedure and algorithm										
	UNIT – IV		(10 Hours)							
Transient Stability Studio	s: Introduction, swing equation, machine equation	austions								
equations	s. Introduction, swing equation, machine et	quations	s. FOWEI System							
•	citation systems: Introduction, DC Excitatio	n systar	n AC Excitation							
	d Type 3 excitation. Load Model: Static, Dyr									
Reference Books:										
	d,A.H.,"Computer Methodsin Power	Syste	em Analysis",							
-	•		, in <i>Funday</i> 515 ,							
 (2019Edition), MEDTECH, A Division of Scientific International 2019. 2. K.UmaRao, "Computer Techniques and Model in Power Systems", 2nd edition, 										
•										
2. K.UmaRao, "Comput	l.		", 2 ^m edition,							
2. K.UmaRao, "Comput I.K.International,2014		, 6 th ed								
2. K.UmaRao, "Comput I.K.International,2014	d Power System Analysis and Dynamics"	, 6 th ed								
 K.UmaRao, "Comput I.K.International,2014 Singh,L.P., "Advanced International(P) Ltd, N 	d Power System Analysis and Dynamics", NewDelhi, 2014.		ition, New Age							
 K.UmaRao, "Comput I.K.International,2014 Singh,L.P., "Advanced International(P) Ltd, N Nagrath,I.J., and Koth 	d Power System Analysis and Dynamics"	, 4 th editi	ition, New Age ion, TMH, 2011.							
 K.UmaRao, "Comput I.K.International,2014 Singh,L.P., "Advanced International(P) Ltd, N Nagrath,I.J., and Koth 	d Power System Analysis and Dynamics", NewDelhi, 2014. ari, D.P., "Modern Power System Analysis",	, 4 th editi	ition, New Age ion, TMH, 2011.							

(For students admitted to I year in 2019-20)

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Recall/define network topology concepts, primitive network, types of buses, load flow studies, economic scheduling and transient studies in power systems.
- 2. Illustrate/describe need for network topology, primitive network, Y_{bus}, types of buses, load flow studies, optimal scheduling of thermal power plants, transient stability of power systems and computer model of DC excitation systems.
- 3. Derive Y_{bus}, Z_{bus}, load flow algorithms by different methods, necessary condition of economic scheduling of thermal generators and swing equations for transient stability of power systems.
- 4. Determine power system parameters using network topology, real and reactive power flow, optimal scheduling of thermal generators, solve swing equations and decide the suitable methods for economic scheduling for thermal generators.

SI.	Course Outcomes	P01	P02	PO3	P04	P05	90d	P07	80d	60d	PO10	P011	P012
1	UEE751C.1	3							1		1		1
2	UEE751C.2	3	1						1		1		1
3	UEE751C.3	3	3	2	2	1			1		1		1
4	UEE751C.4	3	3	3	3	1			1	1	1		2

UEE752C		03 - Credits (3 : 0 : 0)						
Hours/Week : 03	High Voltage, Switchgear & Protection	CIE Marks : 50						
Total Hours :40		SEE	Marks : 50					
UNIT – I (10 Hours)								
			(10 Hours)					
Generation of HV AC a	nd DC Voltage: L-06 Hours							
		e connect						
Classification of high vo	nd DC Voltage: L-06 Hours		ion, working of					

advantages, Tesla coil. HV – DC voltage doublers circuit, Cock croft – Walton type high voltage DC set. Calculation of high voltage regulation, ripple and optimum number of stages for minimum voltage drop, Important applications of high voltages.

Generation of Impulse Voltage and Current: L-04 Hours

Introduction to standard lightning and switching impulse voltages. Analysis of single -stage impulse generator, expression for output impulse voltage. Multistage impulse generator, working of Mark impulse generator, Rating of impulse generator, Components of multistage impulse generator.

Measurement of High Voltages: L-05Hours
Electrostatic voltmeter – principle, construction and limitation. Chubb and Fortessue
method for HVDC measurements. Series resistance micro ammeter, Standard Sphere gap
measurements for HVAC, HVDC and factors affecting the measurements.

UNIT – II

Insulation Testing Techniques: L-05Hours

Dielectric loss and loss angle measurement using Schering Bridge, Transformer ratios arm bridge, Breakdown in solid dielectrics: Intrinsic breakdown, Breakdown of liquid dielectrics: Suspended particle theory, electronic Breakdown, cavity breakdown(bubble's theory)

UNIT – III	(10 Hours)

(10 Hours)

(10 Hours)

Protective Relaying: L-05 Hours Relay definition, Required qualities of Protective Relaying, Primary and Back up protection, Classification of protective Relaying, Induction type Non-directional over current relay, Directional relay. Differential relay- Principle of operation, Percentage Differential relay, Distance relays: Impedance Relay, Reactance Relay, Mho Relay, R-X diagram and Buchholz Relay.

Protection Schemes: L-05 Hours

Merz-Price protection for generator, Merz -Price protection of Transformer. Inter turn fault, Induction motor protection-Protection against phase fault, ground fault and single phasing.

UNIT – IV

		-		
Ctatic	Relavs		Loure	
SLALIC	NEIGVS	.L-U3	TOULS	

Introduction, Basic construction and classification. Definite time lag static over current relay, Inverse time static over current relay, Static over voltage and under voltage relay, Microprocessor based over current relay-block diagram approach.

Principles of Circuit Breakers : L-05 Hours

Principles of AC circuit breaking, Principles of DC circuit breaking, Initiation of arc, maintenance of arc, Arc interruption- High resistance and Low resistance interruption. Re striking voltage, Recovery voltage and resistance switching. Types of circuit breakers- Air break and air blast circuit breakers, SF6 circuit breakers- Puffer type and Non Puffer type.

(For students admitted to I year in 2019-20)

Reference Books:

- 1. Sunil S. Rao "Switchgear and Protection and Power Systems", (13th edition),Khanna Publishers,2008
- 2. J. B. Gupta "Switchgear and Protection", (2nd edition), Katson Publisher, 2013
- 3. Ravindarnath B. "Power System Protection and Switchgear", 2nd edition, New age International, 2008.

Course Outcomes:

After completion of the course the students will be able to,

- 1. Select suitable generating and measuring instrument for testing high voltage equipment's.
- 2. Estimate the ripple factor, maximum voltage and relay timing for different high voltage instruments.
- 3. Compare the different insulating material, protection equipment's for high voltage applications
- 4. Apply the suitable protection equipments for selected rating of current and voltage ratings

sı.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	P07	P08	909	010	011	012
1	UEE752C.1	3	_ 1	_	1	3	_ 1	_	1	_	م 1	Р	<u>م</u> 1
2	UEE752C.2	3	2	1	1				1		1		1
3	UEE752C.3	3	3	2	2	1			1		1		1
4	UEE752C.4	3	3	3	2	1			1	1	1	1	2

UHS753C		03 - Cre	edits (3 : 0 : 0)					
Hours/Week : 03	Intellectual Property Rights	CIE	Marks : 50					
Total Hours :40		SEE	Marks : 50					
	UNIT – I		(10 Hours)					
	nportance of human creativity and its reco	-	-					
	d Rights. Different forms of IPRs. Role of IPR							
•	atent, Objectives and Value of Patent. Cr							
	Methods Patents. Govt. use of inventions,	infringer	ment of Patent					
and remedies for infring	ement. Compulsory license.							
	UNIT – II or art- Tangible versus Intangible prior art		(10 Hours)					
words, structures, sequ disclosed versus claimed Patent Drafting: Types of Filing Requirement of p filing mechanism throu	ences, use of operators, database for se	arching- drafting. , Forms to	free and paid, be submitted,					
	UNIT – III		(10 Hours)					
Trade Marks registration. Trade Marks- Challenges in Non- Conventional Marks. Infringement of Trade Marks and remedies for infringement. Domain names and Trade Names. Industrial Design: Definition of a design. Inclusive and Exclusive Designs; Industrial Design registration in India. Infringement of Design and remedies for infringement.								
	UNIT – IV	,00	(10 Hours)					
Copyright: Nature of Co	ppyright, Subject-matter, Requirements to p	orotect C						
Transfer of Copyright an Confidential Informatio Essentials for an action f	elated Rights. Authorship rights. Copyright d Infringement and remedies. Fair dealing ar on and Trade Secrets: Introduction, Co for breach of confidence.	nd online	streaming.					
Reference Books:	, and a second							
 P. Naryan, "Intellectual Property Law", 3rd Ed, Eastern Law House, 2007. Dr. S. R. Myneni, "Law of Intellectual Property", 9th edition, Asia law House, 2019. Dr. G. B Reddy, "Intellectual Property Rights and Law", Gogia Law Agency. Hydrabad, Reprint edition 2020. N.R. Subbaram., S.Viswanathan, "Hand book Indian Patent Law and, Practice" Printers 								
and publishers Pvt., 5. Cornish, "Intellectua	Ltd, 2008. al Property Rights", Universal publications.							
	"Law Relating to Intellectual Property" 5^{th}	edition,	Universal Law					
7. SWAYAM / NPTL/ materials / notes	MOOCS/ We blinks/ Internet sources/ You	Tube vide	eos and other					

(For students admitted to I year in 2019-20)

Course Outcomes:

After successful completion of this course the student should be able to:

- 1. Identify criteria to fit one's own intellectual work in particular form of IPRs.
- 2. Apply statutory provisions and procedure to protect different forms of IPRs at national and international level.
- 3. Analyze rights and responsibilities of holder of Patent, Copyright, Trademark, Industrial designetc.
- 4. Develop skill of making search using modern tools and techniques.

SI.	Course Outcomes	P01	PO2	PO3	P04	PO5	90d	P07	PO8	60d	PO10	P011	P012
1	UHS753C.1						3						
2	UHS753C.2			2		1	2	2	2		2		2
3	UHS753C.3						3	2	2		2		1
4	UHS753C.4					2				1	1		2

UHS754E		03 - Cre	edits (3 : 0 : 0)					
Hours/Week : 03	Solar Photovoltaic System Design		Marks : 50					
Total Hours :40		SEE	Marks : 50					
	UNIT – I		(10 Hours)					
	y – Introduction and its scenario of India an	-						
=	m, diffuse & beam radiation and solar radiat							
-	6 – I-V & P-V characteristics; Technologie							
problems.	erated; series, parallel and series & parallel	connecti	ons; Numericai					
problems.	UNIT – II		(10 Hours)					
Chapter-03: SPV modu	Ile – Ratings, standard parameters; facto	ors affec	· · ·					
-	aracteristics; connection of modules in seri							
parallel; Mismatch in sei	ries and parallel connections, Introduction to	arrays.						
Chapter-04: Balance of System (BoS) - Batteries; Charge Controllers; MPPT; Inverters. (BoS								
to cover functions, working, types, features, typical specifications and cost). Numerical								
problems.								
			(10 Hours)					
-	Introduction, basics of current conduc	tion, ty	pes of wires,					
	mensions, wire sizing; junction box;	olar DV/r	ower evetores					
	n – stand-alone, grid connected & hybrid s ce, Troubleshooting and Safety of SPV powe							
	anding – Definition, Causes. Types and Prote	•	•					
campus to study installa								
	UNIT – IV		(10 Hours)					
Chapter-07: Introduction	on – Configurations of SPV systems, SI	V syste						
integration – Design Me	thodology for Stand-alone SPV systems.							
Chapter-08: Grid con	nected Solar PV Power Systems (GCS	PVPS) –	Introduction,					
Configurations & Compo	onents of GCSPVPS, GCSPVPS Design for sn	nall appli	cations and for					
power plants.								
Reference Books:								
-	anki, Solar Photovoltaics – Fundamenta	als, Tech	nologies and					
••	arning Private Limited, New Delhi, 2009							
-	nki, Solar Photovoltaic Technology and Sy							
	rs and Engineers, PHI Learning Private Limite 9. Helm Photovoltaic System Technology A Eu							
	hosal, M. K., Fundamentals of Renewable E	-						
Publishing House, N		inergy 50						
Course Outcomes:								
After successful complet	ion of this course the student will be able to	:						
1. Define parameters,	components & features of solar cell, modu	le, panel,	, array and SPV					
	Id be able to describe installation, O&M, tro	ubleshoo	ting and safety					
aspects of SPV syste								
2. Compute/estimate	performance of SPV systems for different	loads ar	nd applications					

(For students admitted to I year in 2019-20)

based on numerical problems.

- 3. Compare and analyze output of different solar PV systems.
- 4. Operate, test, design & discuss a solar PV system stand alone or grid connected based on typical loads

SI.	Course Outcomes	101	204	PO3	P04	P05	90d	707	80d	60d	PO10	P011	P012
1	UHS753C.1	3	1		1	3	1		1		1		1
2	UHS753C.2	3	2	1	1				1		1		1
3	UHS753C.3	3	3	2	2	1			1		1		1
4	UHS753C.4	3	3	3	2	1			1	1	1	1	2

UHS732N		03 - Cre	edits (3 : 0 : 0)					
Hours/Week : 03	Electrical Safety for Engineers		Marks : 50					
Total Hours :40	, 0	SEE	Marks : 50					
	UNIT – I		(10 Hours)					
Introduction to Electrica	al Safety, Electric Shocks and their Preventic	on:						
OSHA standards on ele	ctrical safety, objectives of safety and sec	urity mea	asures, hazards					
	current and voltage, principles of electrication	al safety,	approaches to					
prevent accidents, review								
Primary and secondary electrical shocks, possibilities of getting electrical shock and its								
severity, medical analysis of electric shocks and its effects, shocks due to flash/ Spark over's,								
prevention of shocks, sa	fety precautions against contact shocks, flas	n snocks,						
First Aid in Case of Flast	UNIT – II rris Shocky		(10 Hours)					
First Aid in Case of Electric Shock: First principles of actions after electric shock, first aid-artificial respiration methods, Cardiac								
Pulmonary Resuscitation, accident management and safety management.								
Equipment Earthing and System Neutral Earthing:								
Earthing, need for earthing, types of earthing, distinction between system grounding and								
equipment grounding, functional requirement of earthing system, technical consideration of								
station earthing system, step and touch potential, neutral grounding and its advantages								
<u> </u>	UNIT – III		(10 Hours)					
Safety in Residential, Commercial and Agricultural Installations:								
Domestic wiring metho	ods and installations, safety requirements,	shocks ⁻	from domestic					
equipment-water taps-	wet walls-agricultural pumps, types of ca	bles and	specifications,					
-	st practices with use of electricity.							
Accident Investigation:								
-	stigate, investigation report writing. Case	studies of	of accidents in					
HESCOM/GESCOM regio			(10)					
Electrical Cretary Cafety	UNIT – IV		(10 Hours)					
Electrical System Safety	: eir characteristics, safety clearances and	croopag	o distancos in					
electrical plants, line sup		cieepag	e distances in					
• • •	enomenon, principles of arc extinction, oil &	air hlast ł	oreakers					
•	amental requirements of relaying, classificati							
•	s, Transformers, Bus bars and Lines, protecti		•					
Reference Books:		<u> 0</u>						
1. S. Rao., R. K. Jain.,	H.L. Saluja., "Electrical safety, fire safety	Engineeri	ng and safety					
	nna Publishers New Delhi,2 nd Edition, 2021							
	li, "Energy management policy, planning ar	ıd utilizat	ion", Concept					
Publishing company								
	Mehta, "Principles of Power Systems", S (Chand Pu	blications, 4 th					
Edition, 2008.								
4. The Electricity Act, 2003, https://cercind.gov.in/Act-with-amendment.pdf								

(For students admitted to I year in 2019-20)

Course Outcomes:

After successful completion of this course the student will be able to:

- 1. List and explain the objectives and security measures in electrical safety systems
- 2. Illustrate approaches to prevent accidents in electrical systems and describe the operation of safety devices
- 3. Suggest the methods to rescue & first aid approaches in case of electrical accidents
- 4. Assess & provide solutions to a practical case study and write an investigation report with independent conclusions.

SI.	Course Outcomes	P01	P02	PO3	P04	PO5	90d	P07	90d	P09	PO10	P011	P012
1	UHS753C.1	2	1		1		1		1		1		1
2	UHS753C.2	2	2	1	1				1		1		1
3	UHS753C.3	2	2	2	2				1		1		1
4	UHS753C.4	2	2	2	2				1	1	1	1	2

(For students admitted to I year in 2019-20)

UEE761L		01 - Credits (0 : 0 : 1)
Hours/Week : 02	Power System Simulation Laboratory	CIE Marks : 50
Total Hours : 26		SEE Marks : 50

List of Experiments
1. ABCD parameters for short and medium network of transmission lines.
 Verification of Symmetry and Reciprocity of the network.
 b. Determination of regulation and efficiency.
2. To determine fault currents and voltages in a single line systems with star- delta
transformers at a specified location for SLGF, DLGF, LL and check boundary conditions.
3. YBus formation of power systems with and without mutual coupling by singular
transformation and inspection method.
4. Determination of power angle diagrams for salient and non-salient pole synchronous
m/cs, reluctance power, excitation emf and regulation.
5. Determine stability of power system using Swing equation. To determine critical
clearing time for SMIB system by varying inertia constant, line parameters/fault
location.
6. Write a program to perform load flow study using Gauss-Seidel method (only pq Bus
not exceeding 4-buses).
7. Formation of Jacobian matrix for a given power system not exceeding 4 buses in polar
Coordinates (no PV buses).
8. Write a program to perform load flow study using Fast-Decouple Load Flow Method
9. Optimal Generator Scheduling for Thermal power plants connected to load dispatch
center.
Reference Books:
1. Stag.G.W., and EI-Abaid, A.H., "Computer Methods in Power System Analysis", (2019
Edition), MEDTECH, A Division of Scientific International 2019.
2. K.UmaRao, "Computer Techniques and Model in Power Systems", 2nd edition,
I.K.International, 2014.
3. Singh, L.P., "Advanced Power System Analysis and Dynamics", 6th edition, New Age
International(P) Ltd, New Delhi, 2014.
Course Outcomes:
After completion of the course the students shall be able to:
1. Identify and formulate the electrical network parameters for load flow analysis using
electrical topology
Model and simulate the steady state analysis of power system network
3. Evaluate generator scheduling and economic load dispatch in power plant

	Course Outcom	сэ - г	TUGI	amm		uttoi	IIC3 I	viap	pillg	lan	C		
SI.	Course Outcomes	P01	P02	PO3	P04	P05	90d	707	P08	60d	PO10	P011	P012
1	UEE761L.1	3	1	1		1	1					1	1
2	UEE761L.2	3	1	1	1							1	1
3	UEE761L.3	3	1	1	1							1	1

UEE762L		01 - Credits (0 : 0 : 1)
Hours/Week : 02	High Voltage and Relay Laboratory	CIE Marks : 50
Total Hours : 26		SEE Marks : 50

List of Experiments

- 1. Operating characteristics of static Under/Over Voltage relay.
- 2. Operating characteristics of Microcontroller over voltage relay (DMT and IDMT)
- 3. Operating characteristics of Electro-Mechanical over current relay.
- 4. Operating characteristics of Electro-Mechanical Earth fault relay.
- 5. Operating characteristics of Microcontroller over current relay (DMT and IDMT).
- 6. Operating characteristics of Numerical Under / Over voltage relay (DMT and IDMT).
- 7. Operating characteristics of static Over Current relay (DMT).
- 8. Break down strength of transformer oil.
- 9. Experiment on field plotting using electrodes.
- 10. Measurement of high AC and DC voltage using Sphere-gap.
- 11. Flash-over characteristics of uniform and non-uniform Gaps for HVAC
 - a. Plane-Plane Electrodes (Uniform field)
 - b. Point-Plane Electrodes (Non-uniform field)

12. Flash-over characteristics of Uniform and non-uniform fields for Direct high voltage

- a. Plane-Plane Electrodes
- b. Point positive, Plane negative
- c. Point negative, Plane positive

Reference Books:

- 1. Sunil Rao "Switchgear and Protection and Power Systmes", (13th edition), Khanna Publishers, 2008
- 2. J.B.Gupta "Switchgear and Protection", (2nd edition), Katson Publisher, 2013.
- 3. Ravindarnath B. "Power System Protection and Switchgear", 2nd edition, New age International, 2008.

Course Outcomes:

After completion of the course the students shall be able to:

- 1. Test the breakdown strength of various insulating material by different methods.
- 2. Select the appropriate relays for different current ratings based on their characteristics.
- 3. Estimate the flash over characteristics for uniform and non-uniform fields for high voltage applications.

		••••		•••••					-···o		-		
SI.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P012
1	UEE762L.1	3	1	1		1	1					1	1
2	UEE762L.2	3	1	1	1							1	1
3	UEE762L.3	3	1	1	1							1	1

UEE764I		02 - Credits (0 : 0 : 2)
Hours/Week :	Internship	CIE Marks : 70
Total Hours :		SEE Marks : 30

All the students have to undergo mandatory internship/training in any one of the reputed industry/ research institute. The training program has to be taken up during the vacation between 6th and 7thsemester. The duration of the training program should be for period of 4 weeks. A report on the training is to be submitted. The supervisor/ guide from industry shall allot 70 marks of the CIE and the other 30 by the internal evaluation committee. SEE evaluation will be made by a committee comprising of HoD as Chairman/his nominee, internship coordinator and a senior faculty. The SEE will be a Technical Seminar on the industrial training.

Course Outcomes

After undergoing the internship, students shall be able to:

- 1. Test the theoretical learning in practical situations by accomplishing the tasks assigned during the internship period.
- 2. Operate the systems/ devices independently and tabulate the experimental results in consultation with supervisor.
- 3. Apply various soft skills such as time management, positive attitude and communication skills during performance of the tasks assigned in internship organization.
- 4. Analyze the real time functioning of internship organization.

SI.	Course Outcomes	P01	P02	P03	P04	PO5	P06	P07	P08	P09	PO10	P011	P012
1	UEE764I.1	2	2			2		2	3	2	2	1	3
2	UEE764I.2	2	2		2		2		3	2	2	2	2
3	UEE764I.3	2	2	3	3	3	3	1	3	2	2	3	3
4	UEE764I.4	1	1	2				2	3	3	3	1	2

UEE766P		04 - Credits (0 : 0 : 4)
Hours/Week : 08	Project Work -I	CIE Marks : 50
Total Hours :80		SEE Marks : 50

Phase –I of the project is part of the final year UG Project. Students have to take up Literature survey, formulate the problem of the project, define the project objectives and prepare the project implementation schedule. A certified report and a seminar is to be presented by the students. The seminar should highlight – Broad project area, literature survey, problems definition, Project objectives, implementation schedule of the project and work carried out. Guide will allot CIE marks for 50. For SEE, student has to make a presentation of the work carried out to Project Evaluation Committee (PEC- guide, project coordinator, Hod/Nominee). PEC will allot SEE marks for 50

Course Outcomes

At the end of this course, students will be able to

- 1. Apply their basic knowledge of mathematics, science and engineering to address the project topic.
- 2. Review the literature to identify and formulate problem for the project in contemporary issues.
- 3. Conduct detailed investigations of complex issues associated with project and develop the design procedures for the identified research topic and plan the schedule for the project work.
- 4. Prepare engineering documents and make effective presentation to communicate effectively and collaboratively.

SI.	Course Outcomes	P01	P02	P03	P04	PO5	P06	P07	PO8	60d	P010	P011	P012
1	UEE766P.1	3	3						3	3	3	1	3
2	UEE766P.2	3	3		2		2		3	3	3	2	2
3	UEE766P.3	3	3	3	3	3	3	1	3	3	3	3	3
4	UEE766P.4	1	1	2					3	3	3	1	2

(For students admitted to I year in 2019-20)

UEE851E		03 - 0	Credits (3 :0 : 0)
Hours/Week : 03	Power System Operation and Control	CI	E Marks : 50
Total Hours :40		SE	E Marks : 50
			(10)
Automotic Concretio	UNIT – I	r custom	(10 Hours)
	n Control:Introduction, Control loops of powe Regulator (AVR), performance AVR, modelir	•	
	LFC) of single area systems, performance of λ	-	
	for tie-line flow and frequency deviation, tie		
	allel operation of generators		,
	UNIT – II		(10 Hours)
Control of Voltage an	d Reactive Power: Introduction, generation and	d absorp	tion of reactive
power, relation betw	een voltage, power and reactive power at nod	les, metl	hods of voltage
	or, shunt capacitor, series capacitor, tap cha		
	Compensating Devices-Characteristics of SVC, T		
voltage stability, PV a	nd QV curves, voltage collapse, prevention of vo	oltage co	•
Unit Commitments St	UNIT – III	o of unit	(10 Hours)
	atement of the problem, need and importance ainning reserve, Thermal Unit Constraints, Ot		
•	n, Fuel constraints, Unit commitment Solution		· •
	Programming solution. Reliability Considerati		=
	nstrained Optimal Unit Commitment, Start-up		
	g reliability in Unit commitment		
	UNIT – IV		(10 Hours)
Power System Secu	rity: Introduction, factors affecting power s	ystem s	ecurity, power
system contingency a	nalysis, detection of network problems, netwo	ork sensi	tivity methods,
	< sensitivity factor, contingency ranking		
-	Estimation: Introduction, power system state		
-	least-square estimation, maximum likeli- hood	•	with example,
Reference Books:	Detection and Identification of bad measuremen	nts	
1 Woodand BAIE	Wallenberg "Power Generation Operation and	d Contro	" 2nd Edition
	Wallenberg, "Power Generation, Operation and Sons, 2007.	d Contro	ol", 2nd Edition,
John Wiley and	Sons, 2007.		
John Wiley and 2. G.L. Kusic, "Con		on, PHI,1	1992.
John Wiley and 2. G.L. Kusic, "Con	Sons, 2007. nputer Aided Power System Analysis", 2nd edition	on, PHI,1	1992. Wiely and Sons
John Wiley and 2. G.L. Kusic, "Con 3. T.J.E Miler, "Re NY,1982.	Sons, 2007. nputer Aided Power System Analysis", 2nd editio active Power Control in Electric Power Systems and Kothari, D. P, "Modern Power Systems	on, PHI,1 s", John '	1992.
John Wiley and 2. G.L. Kusic, "Con 3. T.J.E Miler, "Re- NY,1982. 4. Nagrath,I.J., edition),TMH,20	Sons, 2007. nputer Aided Power System Analysis", 2nd editio active Power Control in Electric Power Systems and Kothari, D. P, "Modern Power Systems	on, PHI,1 s", John em A	1992. Wiely and Sons nalysis", (4 th
John Wiley and 2. G.L. Kusic, "Con 3. T.J.E Miler, "Re- NY,1982. 4. Nagrath,I.J., edition),TMH,20	Sons, 2007. nputer Aided Power System Analysis", 2nd editio active Power Control in Electric Power Systems and Kothari,D.P,"Modern Power System 014.	on, PHI,1 s", John em A	1992. Wiely and Sons nalysis", (4 th
John Wiley and 2. G.L. Kusic, "Con 3. T.J.E Miler, "Re NY,1982. 4. Nagrath,I.J., edition),TMH,20 5. Prabha Kundur, Course Outcomes:	Sons, 2007. nputer Aided Power System Analysis", 2nd editionative Power Control in Electric Power Systems and Kothari, D. P, "Modern Power System D14. <u>"Power System Stability and Control", 9th repr</u>	on, PHI,1 s", John em A	1992. Wiely and Sons nalysis", (4 th
John Wiley and 2. G.L. Kusic, "Con 3. T.J.E Miler, "Re- NY,1982. 4. Nagrath,I.J., edition),TMH,20 5. Prabha Kundur, Course Outcomes: After completion of th	Sons, 2007. nputer Aided Power System Analysis", 2nd editionative Power Control in Electric Power Systems and Kothari, D. P, "Modern Power System D14. "Power System Stability and Control", 9th reprint the course the students will be able to,	on, PHI,1 s", John ' em A int, TMH	1992. Wiely and Sons nalysis", (4 th , 2009.
John Wiley and 2. G.L. Kusic, "Con 3. T.J.E Miler, "Re- NY,1982. 4. Nagrath,I.J., edition),TMH,20 5. Prabha Kundur, Course Outcomes: After completion of th 1. Develop the m regulate the free	Sons, 2007. nputer Aided Power System Analysis", 2nd editionative Power Control in Electric Power Systems and Kothari, D. P, "Modern Power System D14. <u>"Power System Stability and Control", 9th repr</u>	on, PHI,1 s", John ' em A <u>int, TMH</u> generat	1992. Wiely and Sons nalysis", (4 th , 2009.

(For students admitted to I year in 2019-20)

of stability issues.

- 3. Identify various compensating device and design the compensating devices applied to power systems.
- 4. Develop the unit commitment table and find the optimum combination of thermal generators for supplying the demand.

			0.	••••••					ro		-		
SI.	Course Outcomes	P01	P02	PO3	P04	P05	P06	P07	PO8	P09	PO10	P011	P012
1	UEE851E.1	3							1		1		1
2	UEE851E.2	3	1						1		1		1
3	UEE851E.3	3	3	2	2	1			1		1		1
4	UEE851E.4	3	3	3	3	1			1	1	1		2

UEE852E		03 - Cr	edits (3 : 0 : 0)												
Hours/Week : 03	Energy Conservation, Audit and Demand	on, Audit and Demand													
Total Hours :40	Side Management SEE Marks :														
	UNIT – I		(10 Hours)												
Energy Scenario: Introduction to Energy; Units and Conversions; GDP, GNP and Per Capita															
Energy Consumption; Renewable Energy Act, International Energy Agency, OECD and Kyoto															
Protocol (only overview)															
_	ergy:Economic analysis of investment, Cash		-												
=	nique – Simple payback period method,														
•	nent technique, Net present value metho														
	index method, Internal rate of return n		-												
-	method; Interest Factors – Single Payme														
	Present Worth (SPPW), Uniform Series Com (FP), Uniform Series Present Worth (USPW)														
(Simple Numericalproble		, Capitai	Recovery (CR).												
	UNIT – II		(10 Hours)												
Motors: Introduction	Aotor Characteristics - Speed, Slip & Effici	ency M													
	y saving, Energy saving options in overs	-													
-	performance of motor, Effect on efficiency of														
	s, Choice of energy efficient motor, Fa														
	fects on Energy Efficiency, Standards and														
Efficient Induction Motor			0 0,												
Lighting:Introduction, Te	erms and definitions – Lumen, Lux, Load	efficacy	, Lamp circuit												
efficacy, Color rendering	g index (CRI); Characteristic of different t	ypes of	lamps. Energy												
saving opportunities in	lighting. Criteria for Energy Efficient Light	ing. Des	igning Lighting												
system – Indoor and Out	door. Effect of reduction in supply voltage of	on energy	saving opportunities in lighting. Criteria for Energy Efficient Lighting. Designing Lighting												
Timers and occupancy se	insors.		y consumption.												
			y consumption.												
Energy Management a	UNIT – III		(10 Hours)												
Energy Management and Audit: Energy management; Developing energy use profiles; Sankey Diagram; Process flow diagrams; Material and energy balance; Energy auditing															
Sankey Diagram; Proces	UNIT – III nd Audit:Energy management; Developin		(10 Hours) y use profiles;												
Sankey Diagram; Proces instruments.	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba	alance; E	(10 Hours) y use profiles; nergy auditing												
Sankey Diagram; Proces instruments. Energy audit – Need fo	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty	alance; E	(10 Hours) y use profiles; nergy auditing												
Sankey Diagram; Proces instruments.	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty , Detailed energy audit;	alance; E	(10 Hours) y use profiles; nergy auditing energy audit –												
Sankey Diagram; Proces instruments. Energy audit – Need fo Preliminary energy audit	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty , Detailed energy audit; UNIT – IV	lance; E	(10 Hours) y use profiles; nergy auditing energy audit – (10 Hours)												
Sankey Diagram; Proces instruments. Energy audit – Need for Preliminary energy audit, Energy Conservation:Int	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty , Detailed energy audit; UNIT – IV troduction, Results of energy conservation	ypes of o	(10 Hours) y use profiles; nergy auditing energy audit – (10 Hours) ples of energy												
Sankey Diagram; Process instruments. Energy audit – Need for Preliminary energy audit, Energy Conservation:Int conservation, Energy cor	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty , Detailed energy audit; UNIT – IV troduction, Results of energy conservation nservation planning, Energy conservation Ad	n, Princip	(10 Hours) y use profiles; nergy auditing energy audit – (10 Hours) ples of energy sy conservation												
Sankey Diagram; Process instruments. Energy audit – Need for Preliminary energy audit, Energy Conservation:Int conservation, Energy corr in residential and comme	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty , Detailed energy audit; UNIT – IV troduction, Results of energy conservation nservation planning, Energy conservation Ac ercial sectors, Energy conservation in transp	n, Princip rt,; Energ	(10 Hours) y use profiles; nergy auditing energy audit – (10 Hours) ples of energy y conservation considerations												
Sankey Diagram; Process instruments. Energy audit – Need for Preliminary energy audit Energy Conservation:Inf conservation, Energy corr in residential and comme for Energy conservation	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty , Detailed energy audit; UNIT – IV troduction, Results of energy conservation nservation planning, Energy conservation Ad ercial sectors, Energy conservation in transp n in industry, Energy conservation in	n, Principortation, electrici	(10 Hours) y use profiles; nergy auditing energy audit – (10 Hours) ples of energy y conservation considerations												
Sankey Diagram; Process instruments. Energy audit – Need for Preliminary energy audit, Energy Conservation:Int conservation, Energy corr in residential and comme for Energy conservation transmission and distribu	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty , Detailed energy audit; UNIT – IV troduction, Results of energy conservation nservation planning, Energy conservation Ad ercial sectors, Energy conservation in transp n in industry, Energy conservation in ution, Energy conservation in agricultural sec	n, Princip r, Princip r, Energe ortation, electrici	(10 Hours) y use profiles; nergy auditing energy audit – (10 Hours) ples of energy y conservation considerations ty generation,												
Sankey Diagram; Process instruments. Energy audit – Need for Preliminary energy audit, Energy Conservation:Int conservation, Energy corr in residential and comme for Energy conservation transmission and distribut Demand Side Managem	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty , Detailed energy audit; UNIT – IV troduction, Results of energy conservation nservation planning, Energy conservation Ad ercial sectors, Energy conservation in transp n in industry, Energy conservation in transp n in industry, Energy conservation in ution, Energy conservation in agricultural sec nent: Introduction to DSM – Definition, F	n, Princip r, Princip r, Energ ortation, electrici tor. Evolution	(10 Hours) y use profiles; nergy auditing energy audit – (10 Hours) ples of energy y conservation considerations ty generation, , Benefits and												
Sankey Diagram; Process instruments. Energy audit – Need for Preliminary energy audit, Energy Conservation:Inf conservation, Energy corr in residential and comme for Energy conservation transmission and distribu Demand Side Managen Scope; Role of Energy C	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty , Detailed energy audit; UNIT – IV troduction, Results of energy conservation nservation planning, Energy conservation Ad ercial sectors, Energy conservation in transp n in industry, Energy conservation in transp n in industry, Energy conservation in ution, Energy conservation in agricultural sec nent: Introduction to DSM – Definition, F Companies, Load Management, Application	n, Princip r, Princip r, Energ ortation, electrici tor. volution of Load	(10 Hours) y use profiles; nergy auditing energy audit – (10 Hours) ples of energy y conservation considerations ty generation, , Benefits and I Control, DSM												
Sankey Diagram; Process instruments. Energy audit – Need for Preliminary energy audit, Energy Conservation:Int conservation, Energy cor in residential and comme for Energy conservation transmission and distribut Demand Side Managen Scope; Role of Energy Conservation Implementation Issues, S	UNIT – III nd Audit:Energy management; Developin as flow diagrams; Material and energy ba or energy audit, Scope of energy audit, Ty , Detailed energy audit; UNIT – IV troduction, Results of energy conservation nservation planning, Energy conservation Ad ercial sectors, Energy conservation in transp n in industry, Energy conservation in transp n in industry, Energy conservation in ution, Energy conservation in agricultural sec nent: Introduction to DSM – Definition, F	n, Princip r, Princip r, Energe ortation, electrici tor. Evolution of Load Custome	(10 Hours) y use profiles; nergy auditing energy audit – (10 Hours) ples of energy y conservation considerations ty generation, , Benefits and I Control, DSM												

(For students admitted to I year in 2019-20)

Reference Books:

- 1. Suresh Kumar Soni and Manoj Nair, Energy Conservation and Audit, Satya Prakashan, New Delhi, 2010
- 2. Rajiv Shankar, Energy Auditing in Electrical Utilities, Viva Books, New Delhi 2010
- 3. Larry C. White, Philip S. Schmidt, David R. Brown, "Industrial Energy Management Systems", Hemisphere Publishing Corp, New York.
- 4. Albert Thumann, "Fundamentals of Energy Engineering", Prentice Hall Inc, Englewood Cliffs, New Jersey.

Course Outcomes:

After completion of the course the students will be able to,

- 1. Define/list different energy resources, energy management/audits, energy efficient motors, lighting terminologies and demand side management terminologies.
- 2. Describe/explain energy economic methods, energy audit methods, lighting criteria and DSM techniques
- 3. Compute/determine numerical problems and compare & contrast on selection of energy economic techniques, lighting criterion, energy efficient motors and energy alternative from DSM techniques
- 4. Evaluate various methods of energy conservation & DSM in different sectors like agriculture, commercial, transpiration and domestic and design & develop methods/techniques for energy conservation, audit & management

SI.	Course Outcomes	P01	P02	PO3	P04	P05	P06	P07	904	60d	PO10	P011	P012
1	UEE852E.1	3							1		1		1
2	UEE852E.2	3	1						1		1		1
3	UEE852E.3	3	3	2	2	1			1		1		1
4	UEE852E.4	3	3	3	3	1			1	1	1		2

UEE853E		03 - Credits (3 : 0 : 0)
Hours/Week : 03	Smart Grid	CIE Marks : 50
Total Hours :40		SEE Marks : 50

UNIT – I	(10LHours)
Smart Grid Architectural Designs:Introduction, Today's Grid versus the Sma	
Independence and Security Act of 2007: Rationale for the Smart Grid,	
Intelligence, Power System Enhancement, Communication and Standards, Er	-
Economics, General View of the Smart Grid Market Drivers, Stakeholder Role	
Working Definition of the Smart Grid Based on Performance Measures,	
Architecture, Functions of Smart Grid Components.	Representative
Smart Grid Communications and Measurement Technology:Comm	unication and
Measurement, Monitoring, PMU, Smart Meters, and Measurements Technology.	
Google Mapping Tools, Multiagent Systems (MAS) Technology, Microgrid	-
Comparison.	
Performance Analysis Tools for Smart Grid Design: Introduction to Load	Flow Studies
Challenges to Load Flow in Smart Grid and Weaknesses of the Present Load	
Load, Flow State of the Art: Classical, Extended Formulations, and Algorithm	
Management, Effect, Load Flow for Smart Grid Design, DSOPF Application to t	· •
UNIT – II	(10L Hours)
Network Theorems: Introduction to Stability, Strengths and Weaknesses of I	
Stability Analysis Tools, Voltage Stability Assessment, Voltage Stabili	
Techniques, Voltage Stability Indexing, Analysis Techniques for Steady	=
Stability Studies, Application and Implementation Plan of Voltage Stabil	-
Stability Constraint through Preventive Control of Voltage Stability,	
Assessment.	о ,
Computation Tools for Smart Grid:Introduction to Computational Tools, De	ecision Support
Tools, Optimization Techniques, Classical Optimization Method, Heuristic	Optimization,
Evolutionary Computational Techniques, Pareto Method.	
UNIT – III	(10L Hours)
Pathway for Designing Smart Grid:: Introduction to Smart Grid Pathway	-
and Solutions to Smart Grid Development, Solution Pathways for Design	-
Using Advanced Optimization and Control Techniques for Selection Functions	
Automation, Bulk Power Systems Automation of the Smart Grid at Tran	
Distribution System, Automation Requirement of the Power Grid, End User/	Appliance Level
of the Smart Grid, Applications for Adaptive Control and Optimization.	
Renewable Energy and Storage: Renewable Energy Resources, Sustainable	•
for the Smart Grid, Penetration and Variability Issues Associated with Sust	•.
Technology, Demand Response Issues, Electric Vehicles and Plug-in	Hybrids, PHEV
Technology, Environmental Implications, Storage Technologies, Tax Credits.	(10)
UNIT – IV	(10L Hours)
Interoperability, Standards, and Cyber Security: Introduction, Interoperability	-
Smart Grid Cyber Security, Cyber Security and Possible Operation	ioi iniproving
Methodology for Other Users.	

(For students admitted to I year in 2019-20)

Research, Education, and Training for the Smart Grid:Introduction, Research Areas for Smart Grid Development, Research Activities in the Smart Grid, Multidisciplinary Research Activities, Smart Grid Education, Training and Professional Development.

Case Studies and Test beds for the Smart Grid:

Introduction, Demonstration Projects, Advanced Metering, Microgrid with Renewable Energy, Power System Unit Commitment (UC) Problem, ADP for Optimal Network Reconfiguration in Distribution Automation, Case Study of RER Integration, Testbeds and Benchmark Systems, Challenges of Smart Transmission, Benefits of Smart Transmission.

Reference Books:

- 1. James Momoh., "Smart Grid, Fundamentals of Design and Analysis", (1st Edition), Wiley, 2012.
- 2. Clark W Gellings, "The Smart Grid, Enabling Energy Efficiency and Demand Side Response"- CRC Press, 2009.

3. Yokoyama, Nick Jenkins, "Smart Grid: Technology and Applications" - Wiley, 2012.

Course Outcomes:

After completion of the course the students will be able to,

- 1. Identify the smart measuring instruments for two way communication of each components in grid.
- 2. Apply the suitable load flow analysis technique for exiting distribution system.
- 3. Evaluate the optimal value for distribution system including renewable energy and storage systems.
- 4. Formulate the existing distribution for the conversion to smartgrid using standards as for the case studies.

SI.	Course Outcomes	P01	PO2	PO3	P04	PO5	P06	P07	PO8	909	P010	P011	P012
1	UEE853E.1	3	1		1	3	1		1		2		1
2	UEE853E.2	3	2	1	1				1		1		1
3	UEE853E.3	3	3	2	2	1			1		1		1
4	UEE853E.4	3	2	3	2	1			1	1	1	1	2

UEE860S		1 - Credits (0 : 0 : 2)
Hours/Week : 2	Technical Seminar	CIE Marks : 50
Total Hours :26		SEE Marks : 50

(OL-OT-2P Hours)

Technical seminar is an important integral part of BE (E&EE) program. Seminaris outcome of 4 years of engineering program and is expected to test the learning skills of a student. It reflects quality of teaching-learning process in the department. Seminar work will remain as an epitome of your entire professional career.

Seminar should be based on thrust areas in state of arttechnologies. Students should identify the topic of seminar and finalize in consultation with coordinator. Students should understand the topic and compile the report in standard format and present in front of Panel of Examiners respective Programme.

Course Outcomes

At the end of this course, students will be able to:

- 1. Enhance the knowledge on engineering problems associated with electrical & electronics engineering and interdisciplinary research.
- 2. Data analysis and interpretation of contemporary tools & resources to analyze / validate the solutions of engineering problems
- 3. Communicate effectively to meet the technical seminar requirements and present the work to technical audience.
- 4. Prepare quality technical report with detailed analysis and representation of selected topic.

SI.	Course Outcomes	P01	P02	PO3	P04	PO5	90d	707	P08	P09	PO10	P011	P012
1	UEE860S.1	3	3						3	3	3	1	3
2	UEE860S.2	3	3		2		2		3	3	3	2	2
3	UEE860S.3	3	3	3	3	3	3	1	3	3	3	3	3
4	UEE860S.4	1	1	2					3	3	3	1	2

UEE865P		12 - Credits (0 : 0 : 24)
Hours/Week : 24	Project Work -II	CIE Marks : 50
Total Hours :240		SEE Marks : 50

(OL-OT-12P Hours)

Phase –II of the project is part of the final year UG Project. Students have to take up Design methodology and planning of project work, Description of Concepts and Technical Details, Incorporation of Suggestions made by examiners during CIE and prepare the project implementation schedule. A certified report with project demonstration and a seminar is to be presented by the students. The seminar should highlight – Broad project area of their project work carried out. CIE of 50 marks will be allotted by the examiners as per the rubrics. For SEE, student has to make a presentation of the work carried out to Project Evaluation Committee (PEC- Project coordinator, Internal Examiner, External Examiner). PEC will allot SEE marks for 50.

Course Outcomes

At the end of this course, students will be able to:

- 1. Identify, formulate & analyze the engineering problems associated with electrical & electronics engineering and interdisciplinary research.
- 2. Design & implement proposed solutions for complex engineering problems to meet specified objectives by analyzing / validating the design / solutions of engineering problems using contemporary tools & resources.
- 3. Prepare engineering documents and make effective presentation to communicate effectively and collaboratively with detailed analysis and interpretation of results to yield valid conclusions.
- 4. Demonstrate social, ethical cultural & engineering professional responsibilities.

SI.	Course Outcomes	P01	P02	PO3	P04	P05	P06	P07	P08	909	PO10	P011	P012
1	UEE865P.1	3	3						3	3	3	1	3
2	UEE865P.2	3	3		2		2		3	3	3	2	2
3	UEE865P.3	3	3	3	3	3	3	1	3	3	3	3	3
4	UEE865P.4	1	1	2					3	3	3	1	2